2016

Ownership of the Means of Production

E. Glen Weyl

Anthony Lee Zhang

Follow this and additional works at: https://chicagounbound.uchicago.edu/law_and_economics

Part of the Law Commons

Recommended Citation

This Working Paper is brought to you for free and open access by the Coase-Sandor Institute for Law and Economics at Chicago Unbound. It has been accepted for inclusion in Coase-Sandor Working Paper Series in Law and Economics by an authorized administrator of Chicago Unbound. For more information, please contact unbound@law.uchicago.edu.
Ownership of the Means of Production

E. Glen Weyl† Anthony Lee Zhang‡

January 2017

Abstract

Private ownership creates monopoly power, harming the dynamic efficiency of asset allocation. Common ownership improves allocative efficiency, but eliminates incentives to invest in the common value of assets. We propose a simple partial private ownership system, Harberger licensing, for public assets. Lessors self-assess a price at which they commit to sell the asset to any interested buyer and pay a tax on this price. In a calibrated dynamic trade model, setting Harberger tax rates using a simple rule-of-thumb – half the observed turnover rate – increases steady state value by 4.6% of asset prices under full private ownership.

Keywords: property rights, market power, investment, asymmetric information bargaining

JEL classifications: B51, C78, D42, D61, D82, K11

†Microsoft Research New York City, 641 Avenue of the Americas, New York, NY 10011 and Department of Economics, Yale University; glenweyl@microsoft.com, http://www.glenweyl.com.
‡Stanford Graduate School of Business, 655 Knight Way, Stanford, CA 94305; anthonyz@stanford.edu.

*We appreciate helpful comments by Evan Kwerel, Eric Posner, Paul Milgrom, Jeremy Bulow, Lanier Benkard, Michael Ostrovsky, Andy Skrzypacz, Mohammad Akbarpour, Matthew N. White, seminar participants at the London School of Economics, the Hong Kong University of Science and Technology, Paul Milgrom’s workshop, Microsoft Research, Stanford University, the University of Chicago Law School, the Yale School of Management, ASSA 2017, Airbnb, and especially Nicolaus Tideman. Alex Moehring provided excellent research assistance. All errors are our own.
What is common to the greatest number gets the least amount of care. Men pay most attention to what is their own; they care less for what is common; or at any rate they care for it only to the extent to which each is individually concerned.

– Aristotle, *The Politics*, Book XI, Chapter 3

Property is only another name for monopoly.

– William Stanley Jevons, preface to the second edition of *The Theory of Political Economy*

1 Introduction

Private ownership of the means of production is perhaps the oldest continually maintained doctrine in mainstream economic thought, dating back to the Greek prehistory of the field, and continues to pervade contemporary thought. Jacobs (1961) and de Soto (2003) argue the undermining or lack of property rights discourages investment in rich and poor countries equally, and Acemoglu and Robinson (2012) to consistently list property rights as the leading example of the “inclusive institutions” they argue foster economic development. Economic theory suggests that private property is necessary to incent agents to invest in maintaining the common use value of assets; this idea is developed in detail by Grossman and Hart (1986) and Hart and Moore (1990).

On the other hand, private property can adversely affect the efficient allocation of assets, by inhibiting the transfer of assets to individuals who value them most. The founders of contemporary economic analysis (Jevons, 1879; Walras, 1896) believed that private property was inherently in conflict with the market principle at the heart of their systems, succinctly expressed in our second leading quote. This argument was formalized by Myerson and Satterthwaite (1981), who show that fully efficient trade of privately owned assets under asymmetric information is impossible. Conversely, if assets are initially owned by a benevolent government, Vickrey (1961) showed that full allocative efficiency can be achieved by auctioning the asset to potential buyers. Cramton, Gibbons and Klemperer (1987) and Segal and Whinston (2011) further explore these ideas, showing that partial property rights can improve allocative efficiency. This literature suggests that, in settings where allocative efficiency is a first-order concern, private property may be inferior to partially shared ownership.

For a variety of assets, both allocative and investment efficiency are important concerns. Consider, for example, government-owned natural resources such as fisheries or oilfields. Different firms may have a range of costs of extracting these resources, and these costs may evolve over time, implying that dynamic asset allocation is a first-order concern. If the government runs a one-time auction to sell long-lasting or perpetual ownership rights over the resource to a firm, bargaining frictions in aftermarkets will inhibit efficient trade of the asset to lower-cost
firms. The government can improve allocative efficiency by maintaining ownership over the resource and running annual auctions to usage rights to firms. However, under such a system, firms would have no incentives to maintain the common value of assets that they win usage auctions for; firms that wins these auctions may tend to overfish the fisheries, or extract too much oil from the oilfields, relative to the social optimum. In such contexts, one might think that a system of partial property rights, trading off the investment incentives from private property with the allocative benefits from common ownership, might dominate both the extremes of full private and full common ownership. However, it is unclear how one could implement such partial property systems in practice.

In this paper, we propose a system of ownership conditional on self-assessed tax payments as a simple implementation of partial property rights. We will refer to this system as Harberger licensing, after Harberger (1965) who first proposed this. Under this system, the government designates certain assets as being owned under Harberger licenses, rather than the perpetual ownership licenses associated with private property. Any individual who owns an asset under a Harberger license must periodically announce to the government her valuation for the license, and must pay taxes equal to some fraction of her announced value to the government. The government maintains a ledger of all assets owned under Harberger licenses, and the value announcements of their current owners; potential buyers can purchase any license on the ledger from its current owner at the owner’s most recent self-assessed valuation.

If individuals were asked to announce their values for assets without paying taxes, they would tend to announce prices higher than their true values to exploit their monopoly power, inefficiently inhibiting transfer of the asset to buyers with higher values. Under Harberger licensing, license owners effectively repurchase a fraction of their assets from the government each period at the valuations that they announce, reducing their incentives to announce high prices. We show that license owners set prices higher or lower than their true values depending on whether the probability of asset sale is higher or lower than the Harberger tax rate. Thus, the equilibrium asset turnover rate is an observable approximate sufficient statistic for setting Harberger tax rates: when the tax rate is set equal to the probability that the asset is sold, license owners on average announce prices equal to their values, leading to approximate allocative efficiency. The cost of Harberger licensing is that, since license owners pay taxes on the capital value of any assets that they own, positive tax rates decrease license owners’ incentives to make common-valued investments in their assets.

We study the effects of Harberger licensing within a dynamic overlapping-generations model of asset trade. An agent holds a Harberger license for an asset; each period, new buyers interested in purchasing the license arrive to the market. Agents’ use values for the asset evolve as Markov processes. We solve the model, showing under some smoothness assumptions on transition distributions that there exists a unique Markovian equilibrium of the trading game for any Harberger tax rate. We numerically calibrate the model to loosely match moments of
existing markets for durable assets, finding that annual Harberger taxes set at roughly 2.5% are near optimal for a range of specifications and parameter values. This increases the net utility generated by the asset in the stationary trading equilibrium of the model by approximately 4% in our baseline specification, or roughly a fifth of a standard deviation in willingness-to-pay of different potential asset buyers. We suggest a simple rule-of-thumb for Harberger license design: tax rates should be set at roughly half the observed turnover rates of similar assets in existing markets.

Harberger licensing is fairly simple to implement in practice, and similar systems have been used in a variety of settings dating as far back as ancient Rome.1 To our knowledge, we are the first to propose using self-assessed taxation to improve allocative efficiency in asset markets.2 We believe that Harberger licensing with rule-of-thumb tax rates are a robust practical proposal for improving allocative efficiency for a large of assets; in particular, we suggest that this is an appropriate design for usage licenses for many kinds of publicly owned natural resources, such as oilfields, fishing rights, and radio spectrum.

In Section 2, we illustrate the basic intuitions behind Harberger licensing in a simple two-stage model. In Section 3, we introduce the general dynamic model and characterize its equilibria. In Section 4, we calibrate the model to existing asset markets. In Section 5, we discuss various extensions, such as the effect of community observability of investment, the effect of taxation on private-value investments, and relaxing our assumptions on the nature of buyers and sellers. In Section 6, we discuss our proposal’s relationship to other work on mechanism design, asset taxation and intellectual property. In Section 7, we discuss potential applications of Harberger licensing to different classes of assets. We conclude in Section 8. We present longer and less instructive calculations, proofs, and calibration details in an appendix following the main text.

2 Two-stage model

We illustrate the intuitions behind Harberger licensing in a simple two-stage model. Agent S holds a Harberger license for an asset. She first makes some common-valued investment in the asset, then announces a valuation to the government and pays a fraction of this valuation as a Harberger tax. Arriving buyers can then purchase the license from the seller at her announced valuation. In Subsection 2.2, we show that the Harberger tax gives S an incentive to announce lower prices, counteracting her monopolistic incentive to charge prices above her value to buyers. However, in Subsection 2.3, we show that Harberger licensing reduces S’s incentives to make

1See Epstein (1997) for a detailed history. The largest scale recent experiment we are aware of was in Taiwan based on a proposal by Sun Yat-sen, forefather of modern China (Sun 1924, Niou and Tan 1994), though in that case only the government was allowed to force a sale. However, on the private side, related institutions exist in horse racing (Hall 1986), partnership dissolutions (Brooks, Landeo and Spier 2010) and insurance (Cabral, Calvó-Armengol and Jackson 2003).

2The closest prior idea is Tideman (1969)’s demonstration that self-assessed taxes tend to increase the probability of sale, but Tideman does not explicitly model the consequent welfare effects.
investments in the common use value of the asset. In Subsection 2.4 we analyze the tradeoff between the allocative and investment welfare effects of Harberger licensing.

2.1 Setup

There are two agents, S and B. There is a single asset, and S initially owns a Harberger license for the asset. Values of S and B for the asset are, respectively,

\[v_S = \eta + \gamma_S, \]
\[v_B = \eta + \gamma_B. \]

\(\gamma_S \) represents S’s idiosyncratic value component for the asset; it is fixed and known to S at the beginning of the game. \(\gamma_B \sim F(\cdot) \) is a random variable representing heterogeneity in B’s value, which is not observed by S. \(\eta \) is a common-value component; S chooses \(\eta \geq 0 \), incurring a convex cost \(c(\eta) \) to herself. Both agents are risk neutral.

For a given \(\eta \), let \(1_S, 1_B \) be indicators, which respectively represent whether S and B hold the license at the end of the game, and let \(y \) be any net transfer B pays to S. Final payoffs for S and B respectively are

\[U_S = (\eta + \gamma_S) 1_S - c(\eta) + y \]
\[U_B = (\eta + \gamma_B) 1_B - y. \]

Prior to the beginning of the game, the government decides on a Harberger tax rate \(\tau \). Then, S and B play a two-period game. In period 1, S chooses \(\eta \). In period 2, S announces a price \(p \) for the license, pays taxes \(p\tau \) to the government, and then B can decide whether to buy the license by paying \(p \) to S. The revenue that the government raises is distributed to the broader community in a manner we do not specify here.

We solve the game by backwards induction. First, fixing \(\eta \) and \(\tau \), we analyze the behavior of S in the period 2 price offer game.

2.2 Allocative efficiency

For any price \(p \), B’s optimal strategy is to buy the license if her value is greater than \(p \), that is, if \(\eta + \gamma_B > p \). Let \(m \equiv p - \eta \) be the markup S chooses to set over the common value \(\eta \). The probability of sale under markup \(m \) is then \(1 - F(m) \). Fixing common value \(\eta \), and Harberger tax rate \(\tau \), S’s optimal price offer solves:

\[\max_m (1 - F(m)) (\eta + m) + F(m) (\eta + \gamma_S) - \tau (\eta + m) - c(\eta) \]

\(^3\)See Tideman (1969) for a partial analysis of the allocative problem that allows for risk aversion.
We can change variables to work in terms of sale probabilities. Define \(q \equiv 1 - F(m) \), and \(M(q) \equiv F^{-1}(1 - q) \). S then solves:

\[
\max_q (\eta + M(q)) q + (\eta + \gamma_S)(1 - q) - \tau(\eta + M(q)) - c(\eta)
\]

Note that the socially efficient outcome corresponds to setting \(M(q) = \gamma_S \), or equivalently \(q = 1 - F(\gamma_S) \). We can rearrange S’s optimization problem to:

\[
\max_q (M(q) - \gamma_S)(q - \tau) + (\eta + \gamma_S)(1 - \tau) - c(\eta)
\]

Only the variable profit term \((M(q) - \gamma_S)(q - \tau) \) depends on the sale probability \(q \). Thus, S’s optimal choice of sale probability if her value is \(\gamma_S \) and the tax rate is \(\tau \) can be written as:

\[q^*(\gamma_S, \tau) \equiv \arg \max_q (M(q) - \gamma_S)(q - \tau) \]

We can think of the objective function as the net trade profits of an agent who sells share \(q \) of the asset to buyers, and buy share \(\tau \) of the asset from the government, both at price \(M(q) \). In the following Theorem, we show that the relationship between \(\tau \) and \(q \) summarizes license owners’ incentives to markup or markdown prices.

Theorem 1. (Net trade property)

- If \(\tau = 1 - F(\gamma_S) \), then \(q^*(\gamma_S, \tau) = \tau \) and \(M(q^*(\gamma_S, \tau)) = \gamma_S \).
- If \(\tau < 1 - F(\gamma_S) \), then \(q^*(\gamma_S, \tau) \geq \tau \) and \(M(q^*(\gamma_S, \tau)) \geq \gamma_S \).
- If \(\tau > 1 - F(\gamma_S) \), then \(q^*(\gamma_S, \tau) \leq \tau \) and \(M(q^*(\gamma_S, \tau)) \leq \gamma_S \).

Proof. First, suppose \(\tau = 1 - F(\gamma_S) \).

- If \(S \) chooses sale probability \(q = \tau \), she makes no net trades, and receives 0 variable profits. Moreover, the markup is \(M(q) = F^{-1}(1 - \tau) = \gamma_S \), so that also \(M(q) - \gamma_S = 0 \).

- If \(S \) chooses a higher sale probability, so that \(q - \tau > 0 \), we have \(M(q) < \gamma_S \), so variable profits \((M(q) - \gamma_S)(q - \tau) \leq 0 \). In words, \(S \) becomes a net seller at a price lower than her value.

- Symmetrically, if \(S \) chooses a lower sale probability \(q - \tau < 0 \), she becomes a net buyer at a price higher than her value, and once again variable profits \((M(q) - \gamma_S)(q - \tau) \leq 0 \).

Now suppose that \(\tau < 1 - F(\gamma_S) \).
• By the first part of the Theorem, license owners with higher values \(\gamma_S' = F^{-1}(1 - \tau) \) have
\(\tau = 1 - F(\gamma_S') \), hence choose \(q^*(\gamma_S', \tau) = 1 - F(\gamma_S') \). By construction, \(\gamma_S \leq \gamma_S' \); since the
variable profit function is supermodular in \(q \) and \(-\gamma_S, q^*(\gamma_S', \tau) \geq q^*(\gamma_S', \tau) = \tau \).

• By the first part of the Theorem, if we set a lower tax \(\tau' = 1 - F(\gamma_S) \), we have \(q^*(\gamma_S, \tau') = 1 - F(\gamma_S) \) and \(M(q^*(\gamma_S, \tau')) = \gamma_S \). By construction, \(\tau \leq \tau' \). Since \(M(q) \) is a decreasing
function, the variable profit function is supermodular in \(q \) and \(\tau \), hence \(q^*(\gamma_S, \tau) \leq q^*(\gamma_S, \tau') = 1 - F(\gamma_S) \). This implies that \(M(q^*(\gamma_S, \tau)) \geq M(q^*(\gamma_S, \tau')) = \gamma_S \).

An analogous argument shows that \(\tau > 1 - F(\gamma_S) \) implies that \(q^*(\gamma_S, \tau) \leq \tau \) and \(M(q^*(\gamma_S, \tau)) \leq \gamma_S \).

Theorem 1 together with its generalizations which we explore below, is the main theoretical
result of the paper. This theorem shows that the net effect of Harberger licensing on sellers’
price-setting incentives is linked to an observable quantity: \(\tau - q \), the difference between the
Harberger tax rate and the probability of sale that it induces. If Harberger tax rates are lower
than equilibrium sale probabilities, license owners can be thought of as selling a larger share
of the asset than they are buying from the government, hence have net incentives to set prices
higher than their values. Likewise, if taxes are higher than sale probabilities, license owners are
buying more from the government than they are selling, thus set prices below their values. When
the tax is equal to the probability of sale, asset owners are neither net buyers nor net sellers of
their assets; thus they set prices equal to their values, leading to full allocative efficiency.

In Theorem 2 of Section 3, we show that the net trade property generalizes to our full
dynamic model. In a setting with many license owners with heterogeneous values, no single
tax level can give all owners incentives to truthfully reveal their values; however, we show in
our calibration of Section 4 that Harberger tax rates equal to average sale probabilities across
sellers are close to allocatively optimal. Thus, the asset turnover rate serves as an observable
approximate sufficient statistic for setting the Harberger tax rate.

We proceed to quantify the comparative statics of allocative welfare with respect to the tax
rate. Assuming \(F(\cdot) \) is twice continuously differentiable, \(S \)’s first-order condition is

\[
M'(q)(q - \tau) + (M(q) - \gamma_S) = 0,
\]

so that by the Implicit Function Theorem,

\[
\frac{\partial q^*}{\partial \tau} = -\frac{M'(q^*(\gamma_S, \tau))}{2M'(q^*(\gamma_S, \tau)) + M''(q^*(\gamma_S, \tau))(q^*(\gamma_S, \tau) - \tau)} = -\frac{1}{2 + \frac{M''(q^* - \tau)}{M'(q^*)}} = \frac{1}{2 - \frac{M''(M - \gamma_S)}{(M')^2}}
\]

where the last equality invokes the first-order condition and drops arguments. Cournot (1838)
showed that this quantity equals the pass-through rate \(\rho(q^*(\gamma_S, \tau)) \) of a specific commodity tax
into price; see Weyl and Fabinger (2013) for a detailed discussion and intuition. ρ is closely related to the curvature of the value distribution; it is large for convex demand and small for concave demand. It is strictly positive for any smooth value distribution and is finite as long as S is at a strict interior optimum.\footnote{Myerson (1981)'s regularity condition is sufficient but not necessary for this second-order condition, as we show in Appendix A.1.}

The marginal gain to social welfare from a unit increase in the probability of sale is equal to the gap between γ_B and γ_S, because the tax raised is simply a transfer. This gap is, by construction, $(M(q^*(\gamma_S, \tau)) - \gamma_S)$. Thus, the marginal allocative gain from raising τ is $(M(q^*(\gamma_S, \tau)) \rho(q^*(\gamma_S, \tau))$, or $(M - \gamma_S)\rho$ for short. Note that $(M - \gamma_S)\rho$ is 0 at $q = 1 - F(\gamma_S)$, so the first-order social welfare gain from taxation approaches 0 as we approach the allocatively optimal tax of $1 - F(\gamma_S)$. On the other hand, when $\tau = 0$, we have $(M - \gamma_S)\rho > 0$, hence increasing τ creates a first-order welfare gain.

2.3 Investment efficiency

Note that the variable profits defined in the previous subsection were independent of η. Only the sunk profits, $(1 - \tau)\eta - c(\eta)$, depend on η. Thus, regardless of what happens in the second stage of the game, S finds it optimal to choose η such that:

\[
c'(\eta) = 1 - \tau.
\]

We can define the investment supply function $\Gamma(\cdot)$ as:

\[
\Gamma(s) \equiv c'^{-1}(s).
\]

The value of a unit of investment η is always 1, so the socially optimal level of investment is $\Gamma(1)$, whereas investment is only $\Gamma(1 - \tau)$ when the tax rate is τ. The social value of investment is always 1, whereas S only invests up to the point where $c' = 1 - \tau$. Thus, the marginal distortion from under-investment is τ. The marginal increase in investment from a rise in τ is $\Gamma' = \frac{1}{c''}$ by the inverse function theorem. Thus, the marginal social welfare loss from raising τ is $\Gamma'\tau$, or $\frac{\tau}{1 - \tau}\Gamma\epsilon_\Gamma$, where ϵ_Γ is the elasticity of investment supply. Note that as $\tau \to 0$, this investment distortion goes to 0, so that there is no first-order loss in investment welfare when $\tau = 0$. Since there is a first-order gain in allocative welfare from raising the tax when $\tau = 0$, the optimal level of τ is strictly greater than 0.
Figure 1: Allocative, Investment, and Total Welfare vs Tax

2.4 Tradeoff between allocative and investment welfare

Figure 1 graphically illustrates the tradeoff between allocative and investment welfare. Allocative welfare increases monotonically in τ on the interval $\tau \in [0, 1 - F(\gamma_S)]$. The marginal gain in allocative welfare from raising the tax is $(M(q^*) - \gamma_S) \rho(q^*)$; thus, the marginal allocative gain is 0 when $\tau = 1 - F(\gamma_S)$ and $M(q^*) = \gamma_S$. Similarly, the marginal investment loss from taxation is $\Gamma'\tau$, which is 0 at $\tau = 0$. These properties hold independently of the cost function and demand distribution; intuitively, this reflects the fact that the marginal trades when $\tau = 1 - F(\gamma_S)$, and the marginal units of investment when $\tau = 0$, both have no social value. Thus, regardless of the underlying cost and demand functions, the efficient tax level τ_{eff} lies strictly in the interior of the interval $[0, (1 - F(\gamma_S))]$.

In Figure 1, allocative welfare is concave and investment losses are convex in τ, so total social welfare is a concave function of τ. While this is not true for all cost functions and demand distributions, it tends to hold for well-behaved values of the primitives. Since the markup $M(q^*)$ is decreasing in τ, allocative marginal gains $(M(q^*) - \gamma_S) \rho(q^*)$ tend to be decreasing in τ, and since the marginal investment loss $\Gamma'\tau$ contains a τ term, marginal investment losses tend to be increasing in τ. Intuitively, as we raise the tax from 0, the first trades that go through are the highest value trades, and the first investment losses are those which are both privately and socially marginal. As we raise the tax, the allocative wedge $M(q^*) - \gamma_S$ decreases, so new trades caused by the tax are less valuable, and the investment wedge τ increases, so investment losses caused by the tax are more costly to society. Thus, for relatively smooth demand forms and cost functions, the social optimization problem of maximizing the allocative gain less the investment loss will be concave.

In Appendix A.1 we derive sufficient conditions on the cost function $c(\cdot)$ and the inverse
demand function $M(\cdot)$ for concavity of the social optimization problem. Under concavity, the following first-order condition, which resembles an optimal tax formula, uniquely characterizes the welfare-maximizing tax level:

$$\frac{\tau_{\text{eff}}}{1 - \tau_{\text{eff}}} = \frac{(M(q^*(\gamma_S, \tau_{\text{eff}})) - \gamma_S) \rho(q^*(\gamma_S, \tau_{\text{eff}}))}{\Gamma(1 - \tau_{\text{eff}}) \epsilon_r (1 - \tau_{\text{eff}})}.$$

(1)

The left-hand side is a monotone-increasing transformation of τ that appears frequently in elasticity formulas in the optimal tax literature; see, for example, Werning (2007). The right-hand side is the ratio of two terms: the allocative benefit of higher taxes and the investment distortion of higher taxes. The allocative benefit equals the product of the mark-up and the pass-through rate, whereas the investment distortion equals the product of the equilibrium investment size and its elasticity with respect to $1 - \tau$.

3 Dynamic model

In this section, we construct a dynamic model of Harberger licensing, and show that the core intuitions of the two-stage model extend to this more general setting. This allows us to study the effect of Harberger licensing on turnover rates and the stationary distribution of use values of license owners.

3.1 Agents and utilities

Time is discrete, $t = 0, 1, 2 \ldots \infty$. All agents discount utility at rate δ. There is a single asset, which an agent S_0 owns at time $t = 0$. In each period, a single buyer B_t arrives to the market and bargains with the period-t owner S_t to purchase the license, through a procedure we detail in Subsection 3.2 below. Hence, the set of agents is $\mathcal{A} = \{S_0, B_0, B_1, B_2 \ldots \}$. We will use S_t as an alias for the period-t owner, who may be a buyer B_t' from some period $t' < t$. We will often use A to denote a generic agent in \mathcal{A}.

In period t, agent A has period-t use value γ_t^A for the asset. The values of entering buyers $\gamma_t^{B_t}$ are drawn i.i.d. from some distribution F. Values evolve according to a Markov process: for any agent A with period-t usage utility γ_t^A, her use value in the next period γ_{t+1}^A is drawn from the transition probability distribution $G(\gamma_{t+1} | \gamma_t)$.

Assumption 1. $F(M) = 1$ for some finite M.

Assumption 2. $\gamma_t > \gamma_t'$ implies $G(\gamma_{t+1} | \gamma_t) > \text{FOSD}_G(\gamma_{t+1} | \gamma_t')$.

Assumption 3. $G(\gamma' | \gamma)$ is continuous and differentiable in γ for any γ'.

Assumption 1 implies that agents' values are bounded above. Assumption 2 implies that agents with higher current use values have higher future use values, in the sense of stochastic
dominance. Assumption 3 guarantees that the value decay process is smooth. These three assumptions imply that stationary equilibria of our trading game exist, and that stationary equilibria satisfy our core characterization result, the net trade property of Theorem 2. However, we require an additional assumption in order to prove the uniqueness of stationary equilibrium.

Assumption 4. \(G(\gamma | \gamma) = 1 \) \(\forall \gamma, \) that is, \(\gamma_{t+1} \leq \gamma_t \) with probability 1.

In our robustness checks in Appendix B.3, we numerically solve a version of the model in which values increase with some probability; we are able to solve for equilibria, the equilibria appear to be unique, and the conclusions of the model are quantitatively similar to models in which values decrease with probability 1. Thus, we view Assumption 4 as inessential for the main results of our paper.

In any period, there is a single user of the asset. Let \(1^A_t \) denote agent A being the user of the asset in period A. Agent A’s utility for ownership path \(1^A_t \) and utility path \(\gamma^A_t \), is:

\[
\sum_{t=0}^{\infty} \delta^t [1^A_t \gamma^A_t + y^A_t]
\]

Where, \(y^A_t \) is any net monetary payment made to agent A in period t.

To avoid dealing with repeated strategic interactions, after the period in which agent A arrives to the market as a buyer, we will allow agent A to remain in the market only so long as \(1^A_t = 1 \); once \(1^A_t = 0 \), agent A leaves the market forever. Thus, in each period t, only two agents exist in the market: the period t seller \(S_t \), and the arriving buyer \(B_t \). Any pair of agents interacts at most once.

A (possibly random) allocation rule \(\Phi(h_t) \) determines in each time t, history \(h_t \) whether to allocate the good to \(S_t \) or \(B_t \). Intuitively, since Assumption 2 states that higher present values imply uniformly higher future values, a social planner aiming to maximize discounted use values should assign the asset to whichever of \(S_t, B_t \) has higher current-period value in any given period. This is formalized in the following proposition.

Proposition 1. The socially optimal allocation rule \(\Phi(\cdot) \) allocates the good to whichever of \(\{S_t, B_t\} \) has higher use value \(\gamma_t \) in every period t.

Proof. See Appendix A.2.\(\square \)

3.2 Game

The community chooses some Harberger tax level \(\tau \) for the license, constant for all time. For any tax level \(\tau \), we will define the following dynamic Harberger license game. At \(t = 0 \), agent \(S_0 \) owns the Harberger license, and observes her own use value \(\gamma^{S_0}_t \) for the asset. In each period t:
1. **Buyer arrival:** Buyer B_t arrives to the market; his use value γ^B_t is drawn from $F(\cdot)$, and is observed by himself but not the period-t seller S_t.

2. **Seller price offer:** The license owner S_t makes a take-it-or-leave-it price offer p_t to buyer B_t, and immediately pays tax τp_t to the community.

3. **Buyer purchase decision:**
 - If B_t chooses to buy the license, she pays p_t to S_t. B_t becomes the period-t asset user, $1^B_t = 1$, and enjoys period-t use value γ^B_t from the asset. B_t becomes the license owner in period $t+1$, that is, $S_{t+1} \equiv B_t$. Seller S_t receives payment p_t from B_t, and seller S_t leaves the market forever, with continuation utility 0.
 - If B_t chooses not to purchase the license, S_t becomes the period-t asset user, $1^S_t = 1$, and she enjoys period-t use value γ^S_t from the asset. S_t becomes the license owner in period $t+1$, that is, $S_{t+1} \equiv S_t$. Buyer B_t leaves the market forever, with continuation utility 0.

4. **Value updating:** γ_{t+1}^{S}, the period $t+1$ value for owner S_{t+1}, is drawn from $G\left(\gamma_{t+1}^{S} | \gamma_{t}^{S}\right)$ according to her period-t value γ_{t}^{S}.

3.3 **Equilibrium**

Equilibrium in the dynamic Harberger license game requires that, in all histories, all sellers make optimal price offers, and all buyers make optimal purchase decisions. Since τ, F, G are constant over time, the problem has a Markovian structure: the optimal strategies of buyers and sellers may depend on their types γ^S_t, γ^B_t respectively, but not on the period t. Hence we can apply dynamic programming techniques, characterizing equilibria of the game by a stationary value function $V(\gamma)$ which describes the value of being a type γ seller in any given period.

In any period t, we can think of S_t as choosing a probability of sale q_t, where buyers in period t make purchase decisions according to the inverse demand function $p(q_t)$. If the continuation value in period $t+1$ for seller type γ_{t+1} is $V(\gamma_{t+1})$, the optimization problem that S_t faces is:

$$\max_{q_t} q_t p(q_t) + (1 - q_t) \left[\gamma_t + \delta E_{G(\cdot)} [V(\gamma_{t+1}) | \gamma_{t}] \right] - \tau p(q_t).$$

Simplifying and omitting t subscripts, optimality for sellers requires $V(\gamma)$ to satisfy the following Bellman equation:

$$V(\gamma) = \max_q (q - \tau) p(q) + (1 - q) \left[\gamma + \delta E_{G(\cdot)} [V(\gamma') | \gamma] \right]$$

(2)

Buyer optimality pins down the relationship between $p(\cdot)$ and $V(\cdot)$. If buyer B_t with value γ_t purchases the license, he receives value γ_t in period t, and then becomes the seller in period
t + 1, receiving utility $\delta V (\gamma_{t+1})$. Hence the period-t willingness-to-pay of buyer type γ_t is:

$$WTP (\gamma_t) = \gamma_t + \delta E_{G(\cdot)} [V (\gamma_{t+1}) | \gamma_t]$$

Thus, in equilibrium, optimality for the buyer implies that the inverse demand function $p (\cdot)$ satisfies:

$$p (q) = \left\{ p : P_{\gamma-F(\cdot)} [\gamma + \delta E_{G(\cdot)} [V (\gamma') | \gamma] > p] = q \right\}$$

(3)

Fixing τ, a value function $V (\cdot)$ which satisfies Equations 2 and 3 defines an equilibrium of the dynamic Harberger license game.

Under Assumptions 1–3, we can prove that the net trade property from the two-stage Harberger license game applies exactly to the dynamic case: net sellers set prices above their continuation values, and net buyers set prices below their continuation values.

Theorem 2. (Dynamic net trade property)

Under Assumptions 1–3, in any τ-equilibrium of the dynamic Harberger license game, the optimal sale probability function $q^* (\gamma)$ satisfies:

- For type γ with $\tau = 1 - F (\gamma)$, we have $q^* (\gamma) = \tau$ and $p (q^* (\gamma)) = \gamma + E_{G(\cdot)} [V (\gamma') | \gamma]$
- For types γ with $\tau < 1 - F (\gamma)$, we have $q^* (\gamma) \geq \tau$ and $p (q^* (\gamma)) \geq \gamma + E_{G(\cdot)} [V (\gamma') | \gamma]$
- For types γ with $\tau > 1 - F (\gamma)$, we have $q^* (\gamma) \leq \tau$ and $p (q^* (\gamma)) \leq \gamma + E_{G(\cdot)} [V (\gamma') | \gamma]$

Proof. This follows from the stronger Claim 2 in Appendix A.3.

If we also impose Assumption 4, we can prove that the dynamic Harberger license game always admits a unique equilibrium.

Theorem 3. For any τ, F, G satisfying our assumptions 1–4, there exists a unique equilibrium of the dynamic Harberger license game.

Proof. We prove this theorem in Appendix A.3, where we also describe a numerical procedure that solves for the unique equilibrium for any τ.

3.4 Investment

Suppose that at the beginning of each period t, the current license owner S_t can make common-valued investment η_t in the asset at cost $c (\eta_t)$. As before, we assume that all investments are fully observable to all agents. We will allow investments to have long-term effects on common values: suppose that, in period $t' > t$, investment η_t increases the common value of the asset for all agents by some $H_{t'-t} (\eta_t)$. In Appendix A.4, we show that common-valued investment affects the equilibrium of the trading game by shifting all offered prices by some constant.
The social value of investment is the discounted sum:

$$\sum_{t=0}^{\infty} \delta^t H_t(\eta)$$

and, the social FOC sets:

$$c'(\eta) = \sum_{t=0}^{\infty} \delta^t H'_t(\eta).$$

The following proposition shows that Harberger licensing distorts longer term investments more than shorter-term investments. Intuitively, if license owners make investments that pay off in t periods in the future, they have to pay taxes for t + 1 periods on their investments, generating an investment wedge of $(1 - \tau)^{t+1}$ relative to the social optimum.

Proposition 2. In any τ-equilibrium of the dynamic Harberger license game, all agents choose a constant level of investment η such that:

$$c'(\eta) = \sum_{t=0}^{\infty} \delta^t (1 - \tau)^{t+1} H'_t(\eta)$$

Proof. See Appendix A.4.

4 Calibration

In this section, we computationally solve our dynamic model under parameters chosen to match moments of various markets for durable assets.

4.1 Functional forms and moment matching

The dynamic Harberger license game requires us to specify the distribution of entering buyer values $F(\gamma)$ and the transition probability distribution $G(\gamma' | \gamma)$. In addition, we need to choose the discount rate δ, and the investment cost function $c(\eta)$ and benefit functions $H_t(\eta)$.

We use the standard choice of annual discount rate $\delta = 0.95$. We assume that the distribution of entering buyer values $F(\cdot)$ is log-normal, with log mean normalized to 0. The log standard deviation σ serves the role of a spread parameter, controlling the amount of idiosyncratic dispersion in values. While this F does not satisfy boundedness, as required by Assumption 1, we will approximate F using a bounded grid distribution.

For the transition distribution $G(\gamma' | \gamma)$, we use a smooth stochastic decay process. If an agent has value γ_t in period t, her period $t+1$ value is $\chi \gamma$, where χ has a beta distribution with mean β. Thus, values decay by a factor β in expectation in each period. We discuss this process in detail, and show results from alternative choices for the transition process, in Appendix B.3.
The parameters to be determined in the model are the log standard deviation \(\sigma \) of \(F \), and either the decay rate \(\beta \) for the smooth transition process or the jump rate \(\omega \) for the jump transition process. To determine these parameters, we will aim to match two empirical moments. First, we match the dispersion of buyer valuations to the dispersion of bids in various static auction settings. A large empirical literature studies static auctions for various usage rights for government resources; these papers tend to find fairly high dispersion in the willingness-to-pay of different buyers for identical assets. The ratio of the standard deviation of idiosyncratic buyer values to its mean is found to be roughly 0.5 for timber auctions (Athey, Levin and Seira, 2011), 0.18 for highway procurement contracts (Krasnokutskaya and Seim, 2011), and roughly 0.2 for oil drilling rights (Li, Perrigne and Vuong, 2000). We will thus require, conservatively for our estimates of welfare gains, that in our model that the standard deviation of the allocative component of equilibrium willingness-to-pay of entering buyers is 0.20 times its mean.

Second, we match the average turnover rate of assets in private markets. We were unable to find appropriate data on the turnover rates of the resource usage rights we use for the valuation dispersion moment. However, Maksimovic and Phillips (2001) finds that roughly 5% of manufacturing plants change owners each year, and Emrath (2013) finds that private housing changes hands on average once per 13 years. We believe that private housing and manufacturing plants are likely to be traded infrequently relative to resource usage rights; hence, we view these turnover rates as likely to be lower than the corresponding numbers for assets such as resource usage rights, which are the main focus of our analysis. We will choose parameters to produce an annual turnover rate of 5% when the tax rate is set at \(\tau = 0 \).

Increasing the rate of value decay by either lowering \(\beta \) or increasing \(\omega \) should increase the efficient probability of sale, the equilibrium probability of sale, and the efficient tax level. Increasing the lognormal standard deviation \(\sigma \) should increase the dispersion of values, the dispersion of prices, and the total achievable allocative welfare gains. Thus, intuitively, the saleprob moment should be matched mostly by the decay parameters \(\beta \) or \(\omega \), while the sdmean moment should be matched mostly by \(\sigma \). We confirm these intuitions in Figure 4, which we discuss further in Subsection 4.2. However, since both parameters simultaneously influence the probability of sale and the dispersion of prices, in each specification, we jointly choose \(\sigma \) and either \(\beta \) or \(\omega \) to match the saleprob and sdmean moments.

We will assume that investment has geometrically depreciating value over time: \(H_t(\eta) = \theta^t \eta \), \(\theta < 1 \). For our calibrations, we will set \(\theta = 0.85 \), which is similar to depreciation rates from in the literature on capital depreciation (Nadiri and Prucha, 1996). To pin down the total

5 Note that we only consider the relative standard deviation of the allocative component of welfare. We could alternatively have set the standard deviation of asset prices to be some fraction of the total asset price, inclusive of investment value; this would lead us to infer a higher degree of dispersion in values of different agents for the asset. However, in this case, it would be harder to interpret the experiment of increase the value of investment while holding the allocative component fixed. We will show that the gains from Harberger licensing are higher if the idiosyncratic component of welfare is larger; thus, this likely underestimates optimal tax rates and welfare gains.
Notes. Stationary distributions of use values in trading equilibrium, for different values of the Harberger tax rate τ. The gray line shows the distribution of entering buyers, which is lognormal with log mean 0.

value of investment, we will use results from a large literature using either cross-sectional or regression-discontinuity designs to study the effects of property rights enforcement on asset values. This literature has found effects of property rights on either asset value or total productivity of roughly 0.2 for water usage rights (Leonard and Libecap, 2016), between 0.01 and 0.7 for agricultural land (Goldstein and Udry, 2008; Jacoby, Li and Rozelle, 2002), and roughly 0.4 for private housing (Galiani and Schargrodsky, 2010). In our baseline specification, we will assume that investment value constitutes a fraction 40% of total average asset value. We will also report quantitative results assuming that the fraction of investment value is either 10% or 70%. In Appendix B.1, we derive analytical expressions for the equilibrium investment level and investment welfare for any value of τ. In Appendix B.2, we describe further details of the numerical procedure we use to analyze the game and solve for equilibria.

4.2 Results

In Figure 2, we plot the equilibrium stationary distribution of use values for different values of τ. As we increase τ from 0 to 15%, probability mass moves from relatively low values towards higher values, as a result of lower markups and increased frequency of sales to high-value entering buyers. However, starting at around 5%, increasing τ also moves mass from the highest values towards somewhat lower values, though this effect does not become pronounced until τ reaches 15%. Intuitively, this is because the highest value license owners set prices below their values, causing the license to occasionally be purchased by buyers with values lower than that
of the owner.

In Figure 3, we show the behavior of various quantities in stationary equilibrium as functions of \(\tau \), assuming that investment is 40% of total asset value. The topmost panel shows allocative, investment and total welfare, in units of percentages of the average license transaction price when the tax rate is 0. Allocative welfare is maximized at a tax rate of 7.5%, which optimizes the trade-off between moving mass away from low value quantiles and away from the highest quantiles. The horizontal line labeled \(\text{eff}_{\text{alloc}} \text{welfare} \) represents the max possible allocative welfare, calculated by solving for the steady-state distribution of use values assuming that the asset is always transferred to the agent with higher value in any period. The allocatively optimal tax rate \(\tau_{\text{alloc}} \) achieves over 70% of the total possible allocative welfare gains. If we take into account investment welfare, the optimal tax rate is 3.5%, and this increases total welfare by 4.6% of the baseline average asset price. Investment losses are not globally convex, likely due to the complex interactions of taxation with persistent investment. However, allocative welfare is still concave, and thus total social welfare is also concave in \(\tau \) for tax rates below and near the efficient tax rate.

The second panel shows the equilibrium sale frequency and the average quantile markup set by sellers, as well as a line of slope 1 representing the tax \(\tau \) itself. When the tax is set equal to the efficient probability of trade, the equilibrium trade probability is also equal to the average tax rate, and the average quantile markup is near 0. However, the optimal tax rate is lower than the efficient probability of trade, likely because the right-skew of the lognormal distribution means that the losses from excessive turnover by high value sellers outweigh the gains from eliminating inefficiently low turnover rates by low value sellers.

In the third panel of Figure 3, we show the behavior of various stock/flow quantities as we vary \(\tau \). License prices rapidly decrease and tax revenues rapidly increase as we increase \(\tau \). Intuitively, if agents have to pay tax \(\tau \) every period, this is roughly equivalent to discounting by rate \(\delta (1 - \tau) \); thus, increasing \(\tau \) has a similar effect to increasing discounting, and rapidly lowers license prices.

In Figure 4, we vary the input moments used in the calibrations for the smooth transition process, and show that optimal tax rates and total welfare gains depend on input moments in intuitive ways. Changing the \(\text{sdmean} \) moment moves the total welfare gain, with a relatively small effect on the optimal tax rate. Changing the \(\text{saleprob} \) moment moves the optimal tax rate, with a smaller effect on welfare gains.

In Table 1, we show results for different choices of the fraction of investment value in asset prices. The optimal Harberger tax rate ranges from 1.9% to 7.5%. Total gains from Harberger licensing range from 1.6% to 11%. In all cases, setting the tax rate equal to 2.5%, or half the asset turnover rate in existing markets, achieves most of the welfare gains (always at least 75%) from the optimal tax.

In Appendix B.3, we report results from a various other specifications for the transition
Figure 3: Comparative statics vs τ

Notes. In the first panel, all welfare changes are in units of percentages of the average asset transaction price at $\tau = 0$. In the third panel, license prices are average prices of licenses conditional on sale occurring.
Notes. In the left column, the SDmean moment is varied holding fixed Saleprob = 0.05. In the right column the Saleprob moment is varied holding fixed SDmean = 0.2. The top row shows the allocative and total optimal taxes, and the bottom row shows the maximum possible total welfare gain as a percentage of the initial asset price.
Table 1: Calibration results

<table>
<thead>
<tr>
<th>Invfrac</th>
<th>Optimal τ</th>
<th>Total gain</th>
<th>Alloc gain</th>
<th>Inv loss</th>
<th>2.5% tax gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>7.5%</td>
<td>10.96%</td>
<td>10.96%</td>
<td>0.00%</td>
<td>8.38%</td>
</tr>
<tr>
<td>10%</td>
<td>6.3%</td>
<td>9.06%</td>
<td>9.73%</td>
<td>-0.67%</td>
<td>7.36%</td>
</tr>
<tr>
<td>40%</td>
<td>3.6%</td>
<td>4.63%</td>
<td>5.66%</td>
<td>-1.04%</td>
<td>4.39%</td>
</tr>
<tr>
<td>70%</td>
<td>1.9%</td>
<td>1.57%</td>
<td>2.13%</td>
<td>-0.57%</td>
<td>1.49%</td>
</tr>
</tbody>
</table>

Notes. All gains are in units of percentages of the average asset transaction price at $\tau = 0$. All columns show welfare changes from the optimal τ, except for the last column, which shows the total welfare gain from imposing a 2.5% tax.

process $G(\gamma' | \gamma)$. We find that our results are robust to relaxing Assumption 4. We also find that Harberger licensing performs worse under transition processes under which, rather than decaying smoothly, values either stay constant or jump directly to 0. However, for all transition processes we tried, Harberger licensing can achieve welfare gains of at least 1% of baseline asset prices, and Harberger taxes set at 2.5% achieve over 75% of the gains from the optimal tax rate.

Based on our calibration, we suggest the following rule-of-thumb for designing Harberger licenses: tax rates should be set at about half the observed trade rates in markets for similar privately owned assets. From Table 1 across most specifications, the optimal tax rate is at or slightly below the private market trade rate of 5%, but a rate half this achieves most welfare gains and robustly achieves positive gains. The probability of trade in tax-free equilibrium is lower than the socially optimal probability of trade; by further halving this amount, such a rule will tend to choose tax rates significantly below the allocative optimum. However, total welfare is increasing and concave in τ for tax rates between 0 and the optimal tax rate, so any tax rate smaller than the optimal value is welfare-improving relative to pure private ownership, and in fact fairly small taxes can capture a large fraction of all possible welfare gains from Harberger licensing.

5 Extensions

In this section, we consider several extensions that investigate the robustness of our analysis and enrich it in various directions. For simplicity, all these extensions build off of the two-stage model of Section 2. In Subsection 5.1, we show that if the community is able to observe and directly incent the seller to make common-valued investments, it can alleviate the investment efficiency losses from Harberger licensing, leading to higher optimal tax levels. In Subsection 5.2, we show that increasing competition on the buyer side lowers the optimal level of the Harberger tax. In Subsection 5.3, we show that Harberger licensing lowers, but does not distort, private-valued investments.
5.1 Partial observability

In some cases, governments may be able to observe and directly reward capital investments. After all, the leading property of common-valued investments is that they affect the objective value of the asset to all individuals, and not just the idiosyncratic value of the seller. If some mix of objective appraisal and various incentive-compatible elicitation mechanisms could provide at least a noisy signal of capital value, the public may be able to directly reward investments through a tax deduction for investment value, thus counteracting some of the investment distortions from Harberger licensing. As a result, the optimal Harberger tax rate will rise towards the allocatively efficient tax level. In this subsection, we formalize these intuitions by following the analysis of Baker (1992) to construct optimal direct property subsidies to mitigate the negative effects of Harberger licensing on investment incentives.

As in Section 2, suppose that S chooses common-valued investment η at cost $c(\eta)$. However, now suppose common value υ is determined by $\upsilon = \zeta \eta$, where ζ is a random variable representing the value of investment in different states of the world. There is local information about ζ; that is, S and B both observe ζ prior to investment, but the public does not.\footnote{An alternative formulation of this model is that the cost of investment is uncertain and is known to the seller and buyer, but the community only observes a noisy signal of the cost. Although this interpretation is more natural in many settings, we focus on the investment value interpretation to stay closer to Baker’s analysis and because it is simpler to present.}

The community can observe η and a signal ξ. Prior to period 1, the community can choose an incentive scheme $\eta \psi(\xi)$, meaning that if the community observes ξ, it will pay S some amount $\psi(\xi)$ for each unit η of investment S makes. This policy is simply a negative property tax (property subsidy) based on an objective appraisal of υ.

Fix a realization of the signal value ξ. If the community chooses reward function $\psi(\xi) \eta$, and the Harberger tax rate is τ, investment level $\Gamma(\psi(\xi) + (1 - \tau) \zeta)$ will be induced. For expositional simplicity, we now focus on the case when costs of investment are quadratic and thus Γ is linear: $\eta(\zeta) = g \zeta$ for some $g > 0$, or, equivalently, that cost is $c(\gamma) = \frac{\gamma^2}{2g}$. Baker (1992) uses Taylor approximations to show that similar conclusions hold for more general investment cost functions.

Given any choice of $\psi(\xi)$, S chooses investment:

$$\Gamma(\psi(\xi) + (1 - \tau) \zeta) = g(\psi(\xi) + (1 - \tau) \zeta).$$

Hence, for a fixed τ, the optimal ψ solves pointwise over realizations of ξ, the maximization
problem:

$$\max_{\psi} \mathbb{E} \left[g (\psi (\xi) + (1 - \tau) \zeta) \zeta - \frac{(g (\psi (\xi) + (1 - \tau) \zeta))^2}{2g} \mid \xi \right].$$

This program has the simple linear solution $\psi (\xi) = \tau \mathbb{E} (\zeta \mid \xi)$, which induces investment

$$g (\tau \mathbb{E} (\zeta \mid \xi) + (1 - \tau) \zeta) = g (\mathbb{E} (\zeta \mid \xi) + (1 - \tau) (\zeta - \mathbb{E} (\zeta \mid \xi))).$$

Investment is thus equal to the conditional expectation of investment value conditional on the signal ξ, plus a multiple $1 - \tau$ of the deviation $\zeta - \mathbb{E} (\zeta \mid \xi)$ from the conditional mean. For higher values of τ, investment is closer to the conditional mean.

The social welfare loss from this noisy estimation is

$$\text{IVL} = \frac{\tau^2}{2} g \mathbb{E} \left[\zeta^2 - (\mathbb{E} (\zeta \mid \xi))^2 \right] = \frac{\tau^2}{2} g (1 - r^2) \text{Var} (\zeta),$$

where $r^2 = \mathbb{E} \left[(\mathbb{E} (\zeta \mid \xi))^2 \right]$ is the fraction of the variance in ζ that is predictable by ξ. If we take the derivative with respect to τ, we get

$$\frac{d \text{IVL}}{d \tau} = -\tau g (1 - r^2) \text{Var} (\zeta). \quad (4)$$

As r^2 increases, $\frac{d \text{IVL}}{d \tau}$ decreases in magnitude, and the socially optimal choice of the Harberger tax given by equation

$$\frac{\tau^*}{1 - \tau^*} = \frac{(M - \gamma_S) \rho}{\tau g (1 - r^2) \text{Var} (\zeta)}$$

moves closer to the allocatively efficient level $(1 - F (\gamma_S))$. Thus, to the degree that the public can observe and reward capital investment, the detrimental effect of Harberger licensing on investment efficiency diminishes, and the optimal Harberger tax level is higher.

These arguments capture some of Hayek (1945)'s intuition that local knowledge is what limits the prospects of common ownership, and is consistent with Lange (1967)'s argument that the improvement of observation and computation through the improvement of information technology would increasingly make common ownership of the means of production feasible.

5.2 Many buyers

Our analysis above assumes that there is a single potential buyer of the license. In many settings, several bidders may be competing to buy the license. In such settings, we might implement Harberger licensing by allowing potential buyers to participate in an auction for the asset, with reserve price equal to the value announcement of the current asset owner. Here, we analyze optimal Harberger tax rates in such an auction model.
Suppose the license belongs to the S, and assume for simplicity that $\gamma_S = 0$. There are multiple potential buyers $B_1 \ldots B_n$, with values drawn i.i.d. from distribution F. The license is sold in a second-price auction, where S can set a reserve price p. S pays a tax on the reserve price p. Let y_1 represent the highest bid, and let y_2 represent the second-highest bid. S’s objective function is

$$\pi_S = y_2 1_{y_1, y_2 > p} + p 1_{y_1 > y_2} + \eta 1_{y_1, y_2 < p} - p \tau.$$

Taking expectations over y_1, y_2 and then taking derivatives with respect to p yields

$$\frac{dE[\pi_S]}{dp} = P(y_1 > p > y_2) - \tau - m \frac{dP(y_1, y_2 < p)}{dp},$$

where, as in Section 2, we define the markup $m \equiv p - \eta$. Substituting for the probability expressions, the derivative becomes

$$\frac{dE[\pi_S]}{dp} = nF^{n-1}(p) (1 - F(p)) - \tau - mnF^{n-1}(p) f(p).$$

If we set this to 0, we get

$$\tau = nF^{n-1}(p) (1 - F(p)) - mnF^{n-1}(p) f(p). \quad (5)$$

Allocative efficiency is achieved when $p = \eta$ and thus $m = 0$, which requires

$$\tau = nF^{n-1}(\eta) (1 - F(\eta)).$$

As $n \to \infty$, this expression goes exponentially to 0. Thus, the allocatively optimal Harberger tax goes to 0 as competition grows. This conclusion is intuitive, given the follow-up to Jevons’ (1879) quote in our epigraph:

But when different persons own property of exactly the same kind, they become subject to the important Law of Indifference...that in the same open market...there cannot be two prices for the same kind of article. Thus monopoly is limited by competition, and no owner, whether of labour, land, or capital, can, theoretically speaking, obtain a larger share of produce for it than what other owners of exactly the same kind of property are willing to accept.

Larsen (2015) confirms this intuition empirically, showing that the welfare loss from asymmetric information in a fairly competitive auction market for used automobiles is only 2%-4% of first-best allocative efficiency. Thus optimal Harberger tax rates will tend to be lower in more competitive environments.
5.3 Selfish investments

Thus far, we have assumed the seller’s investment only affects the common value of the good. Here, we show that if the seller can make private-value investments, which affect only her own value for the good, these investments are efficient conditional on the final probability that the owner keeps the license. This efficiency guarantee is true regardless of the level of the tax, which is why we largely ignore such selfish investments in our analysis above.

Suppose that \(S \) can invest in increasing her private value for the good: she can increase her own use value for the good by \(\lambda \) at cost \(c(\lambda) \). As before, \(B \) has value \(\eta + \gamma_B \) for the good, and all other features of the game are identical to those in Section 2. Fixing \(\gamma_S \) and \(\lambda \), \(S \)'s second stage profits are once again:

\[
\pi_S(\lambda, \gamma_S, \tau) = \max_q p(q) q + (\eta + \gamma_S + \lambda)(1 - q) - p(q)\tau.
\]

Let \(q^*(\tau, \gamma_S) \) represent \(S \)'s choice of \(q \) for any given \(\tau, \gamma_S \). In the investment stage, \(S \) chooses \(\lambda \) to maximize \(\pi_S(\lambda, \gamma_S, \tau) - c(\lambda) \). But, using the envelope theorem, we have that

\[
\frac{d\pi_S(\lambda, \gamma_S, \tau)}{d\gamma} = \frac{\partial}{\partial \lambda} [p(q^*(\tau, \gamma_S)) q^*(\tau, \gamma_S) + (\eta + \gamma_S + \lambda)(1 - q^*(\tau, \gamma_S)) - p(q^*(\tau, \gamma_S))\tau] = 1 - q^*(\tau, \gamma_S).
\]

Hence, the first-order condition for \(S \)'s choice of private-valued investment \(\lambda \) is

\[
c'(\lambda) = 1 - q^*(\tau, \gamma_S).
\]

This equation defines the constrained efficient level of investment, conditional on \(S \) keeping the license with probability \(1 - q^*(\tau, \gamma_S) \). Thus, while Harberger licensing does decrease the propensity of license owners to make private-valued investments, it does so efficiently. Harberger licensing leads license owners to set lower prices and sell their licenses more often; owners correspondingly reduce private-valued investments, in a manner that is both privately and socially optimal.

A few more informal observations are in order:

1. In addition to private-valued investments, we might also consider investments by license owners that affect the value of the asset to potential buyers, but not to the owners themselves. A natural objection to self-assessed taxation is that license owners who are unwilling to sell their assets may set low prices to minimize tax payments, and then purposefully damage their assets, making them less attractive to buyers in order to deter purchase. However, at optimal or rule-of-thumb tax rates, \(\tau \) is smaller than the probability of sale \(q^*(\tau, \gamma_S) \) for most license owners. Thus, the majority of license owners are net
sellers of their assets in any given period; if marginal buyers’ values increase, license owners gain more from increased sale prices than they lose from increased Harberger tax payments. Thus most license owners have net positive incentives to make investments which increase the value of the asset only for potential buyers. Another implication of this fact is that, under reasonable Harberger tax rates, most license owners set prices above their values, and thus receive higher total utility from selling their assets than keeping them. Thus appropriately designed Harberger taxes induce few regretful sales of assets – in market equilibrium, most trades make both buyers and sellers better off.

2. Certain kinds of assets, such as jewelry or other personal items, may have relatively homogeneous low values to all potential owners ex ante. Most of the value from these items comes from the emotional attachments of their owners, which we can think of as private-valued investments made over time. In such contexts, both the socially efficient probability of asset trade and the turnover rates of assets in market equilibrium will tend to be low; thus, rule-of-thumb choices of Harberger tax rates will also be correspondingly low. While Harberger licensing cannot greatly improve allocative efficiency in such contexts, it will also not lead to serious adverse effects on the efficiency of asset trade. Harberger licenses with rule-of-thumb tax rates are thus adaptive to the primitives of asset markets, playing a large role only when high market turnover rates suggest that efficient dynamic reallocation is an important concern.

3. Conversely, in a world in which Harberger licenses and common ownership were ubiquitous, the overall level of private-valued investments that individuals make in assets that they use may decrease significantly. For example, if most cars were rented or held under Harberger licenses, individuals would tend to expend less resources personalizing the cars that they use, and to grow less emotionally attached to their cars. We have argued in this subsection that this is an efficient response to the lowered probability of long-term usage of assets. Many religious and social thinkers, especially from the Buddhist tradition, have suggested that capitalism leads individuals to develop excessive attachments to material possessions; our arguments suggest that these attachments are not fundamental to market-based systems, but are instead tied to the private ownership of property and the frictions that it creates for efficient exchange. The relationship between individuals and the material assets that they use may develop quite differently in market economies augmented with alternative systems of property ownership.

6 Connections

In this section, we relate our proposal to previous economic analysis and practices related to property rights in mechanism design, asset taxation, and intellectual property.
6.1 Other mechanisms

As we discuss in the introduction, this paper is inspired by a body of work that analyzes the role of property rights in asymmetric information bargaining problems (Cramton, Gibbons and Klemperer, 1987; Segal and Whinston, 2011). The mechanisms discussed in this literature tend to be complex, involving entry fees from both sellers and buyers calculated based on the unobserved distributions of agents’ values followed by payments based on the rule proposed by Vickrey (1961), Clarke (1971) and Groves (1973). We view the main benefit of Harberger licensing relative to this body of work as its practicality; Harberger licensing only requires collecting a simple tax based on announced values, and thus requires license administrators only to interact directly with current license owners, rather than all potential license buyers. Harberger license design only involves a single tuning parameter, the tax rate, and the license designer can choose this rate appropriately using observed asset turnover rates, rather than the unobserved distributions of buyer and seller values. We note, however, that Harberger licensing does not achieve the full efficiency that is achieved by the more complex bargaining protocols described by Cramton, Gibbons and Klemperer and Segal and Whinston. We view Harberger licensing as a first step towards designing practical partial property rights systems; we leave the question of whether more sophisticated schemes admit similarly simple implementations to future research.

Our model also differs from other dynamic extensions of bilateral trade models (Athey and Miller, 2007; Skrzypacz and Toikka, 2015) which focus on repeated strategic interactions between a fixed set of individuals. In contrast, our overlapping-generations trade model allows us to study dynamic properties in stationary trading equilibrium, such as license prices and turnover rates, while abstracting away from the technical difficulties associated with repeated strategic interactions. An important benefit of this approach is that our model is quite tractable, giving point predictions about stationary trading equilibria, in contrast to previous work on dynamic trade, which in the style of mechanism design, tends to characterize a set of feasible outcomes. We believe that our model is well-suited to markets for a number of assets, such as natural resources or radio spectrum, where there are enough agents in the market that it is reasonable to abstract away from repeated interactions between any given pair of agents. However, studying the effects of Harberger licensing in settings where repeated strategic interactions are important appears to us to be a valuable direction for further research.

Another mechanism that could avoid market power distortions and thus obviate the need for common ownership is an approximation to the “counter-speculation” subsidies that Vickrey (1961) proposed. In particular, a subsidy in the amount \(\frac{M'(1-F(\gamma_S))(1-F(\gamma_S))}{2} \) that is paid to the seller if and only if a sale takes place has the same effect as as an allocatively efficient Harberger tax. Such a subsidy could conceivably be implemented without distorting investment incentives and thus could potentially be superior to an optimal Harberger tax.

We are concerned, however, that such a scheme would be impracticable for a variety of
informational reasons. First, it requires knowing the value distribution, but without a simple
means to iteratively calculate the value, because it also depends on the value of M'. Second, M'
is particularly difficult to measure and requires a lot of the planner, especially given its value
could be significantly context dependent in a way known to the seller but not to the cadastral
authorities; see [Weyl and Tirole (2012)] for a detailed related discussion. Third, and perhaps most
importantly, the scheme would be open to tremendous manipulation. Two-way sales could take
place in succession and generate net subsidies to the participants. Finally, and perhaps most
importantly, although this scheme would avoid common ownership in some sense, it would
involve much more discretionary official intervention than would Harberger licensing.

6.2 Asset taxation

Discussion of self-assessment systems for taxation and other purposes dates back to at least
ancient Rome ([Epstein, 1993]). However, through most of its history, self-assessment has been
thought of a mechanism for assessing the value of goods for the purposes of equitably raising
revenue. It thus resembles a number of other schemes for using market outcomes to assess the
values of assets for tax purposes; a similar example is the common practice of setting property
taxes based on the most recent sale price of a house.

A problem common to this class of market-based valuation schemes is that nontrivially large
taxes based on market outcomes influence the behavior of market participants. For example,
setting property taxes based on previous sale prices creates incentives for agents to hold on to
property inefficiently long when asset values are rising, in order to avoid paying increased taxes.
In the case of self-assessed taxation, previous authors have noted that higher tax rates lower
value announcements and increase asset turnover rates. Viewed as an instrument for raising
revenue, this appears to be an undesirable side effect of self-assessment. [Levmore] writes that “It
is perhaps unfortunate that these... effects to self-assessment [on turnover rate] exist,” and other
critiques of self-assessed taxation ([Epstein, 1993; Chang, 2012]) also highlight the undesirable
effects of self-assessment on value assessments and market outcomes.

Our proposal inverts the classical argument for self-assessment: rather than using information
from market transactions to more effectively tax assets, we propose that a system of self-assessed
tax licenses for assets can increase the efficiency of market trade for these assets. We show
that the “side effects” of self-assessed taxation on value announcements are governed by a
simple economic intuition: asset owners announce prices above or below their values depending
on whether the self-assessed tax rate is lower or higher than the probability of asset turnover.
Self-assessment is thus difficult to use as an tool for value revelation, since no fixed tax rate
can incent all license owners to announce their valuations truthfully. However, self-assessment
can fairly robustly improve allocative efficiency, since any positive tax rate lower than the asset
turnover rate will induce most asset owners to announce prices closer to their values.
We are not the first to suggest that certain forms of taxation can increase the efficiency of asset allocation, although such proposals are fairly scarce. To our knowledge, Jevons (1879) and Walras (1896) were the first to suggest that common ownership could improve allocative efficiency. This idea was further explored by George (1879), who argued that common ownership of land could be implemented by taxing away rent writing, “It is not necessary to confiscate land – only to confiscate rent.” Beyond the revenue it raised, he argued, “(A)s private property, an individual owner is allowed to prevent others from using what the owner cannot – or will not – use.” More recently, Tideman (1969) highlights how self-assessed taxes might increase turnover of property. However, he does not consider the impact of self-assessed taxation on investment or explicitly model allocative efficiency. To our knowledge, we are the first to explicitly study the effects of self-assessment systems on the efficiency of both asset allocation and investment.

While we have focused on self-assessment in the context of license design, self-assessed taxation may be a useful substitute for existing schemes for capital taxation in settings where optimal tax rates are relatively low. A large literature in economics has studied various rationales for capital taxation unrelated to questions of allocative efficiency; some examples are local property taxes as a source of funds for local public goods provision (Lindahl, 1919; Bergstrom, 1979; Arnott and Stiglitz, 1979), a mechanism for dynamic redistribution (Judd, 1985; Chamley, 1986; Golosov and Tsyvinski, 2015), a mechanism for governments without commitment power to avoid the temptation of appropriative redistribution (Farhi et al., 2012; Piketty, 2014; Scheuer and Wolitzky, 2016) and a tax on wealth as a consumption good (Saez and Stantcheva, 2016).

George’s arguments inspired Sun Yat-Sen, the forefather of modern China, to propose the use of self-assessed taxes (Sun, 1924). However because Sun did not see an allocative role for the tax, he only allowed for compulsory purchase by the government. This system was eventually implemented in the Republic of China (Taiwan) where Sun’s nationalist successors fled. Chang shows this self-assessed taxation performed poorly because the government rarely chose to take under-priced assets, perhaps because of capture or lack of institutional capacity. For low tax rates, below the efficient probability of asset turnover, self-assessed taxation functions similarly to existing methods for capital taxation, raising revenue while decreasing investment incentives, but has the additional benefit of improving the efficiency of asset allocation. It may also be administratively simpler and more reliable, as Harberger argued, because it requires fewer of the challenging discretionary judgments of capital values and income flows that plague the enforcement of existing capital taxes (Zucman, 2015). As such, Posner and Weyl (Forthcoming) argue that Harberger tax rates for capital taxation should be much higher (closer to the allocatively efficiently level) than the rates we find here for license design, once other motives for capital taxation and the replacement of existing capital taxes are accounted for.
6.3 Intellectual property

Since intellectual property is non-rivalrous in consumption, the investment-allocation tradeoff from property rights is particularly clear: the socially optimal allocation is to allow all parties to use all innovations at no cost, but such a system gives agents no inventives to invest in developing innovations. A fairly large literature has addressed the question of optimal ownership rights over intellectual property, largely finding that partial ownership systems, such as limited-term patents, are optimal. In a sense, our argument in this paper is that a similar allocative-investment tradeoff from property rights is relevant for many assets which are rivalrous in consumption. Furthermore, it would be natural to apply Harberger taxation to intellectual property rights to avoid patent thickets and encourage the formation of efficient patent pools, which may otherwise be held up by monopoly power over the holding of the intellectual property (Gilbert, n.d.).

However, directly applying Harberger licensing to promote the efficient use rather than just ownership of intellectual property is challenging for a number of reasons. First, rewarding investment is substantially more complicated in the nonrival case. In this paper, we only considered the impact of Harberger licensing on a simple type of investment, one which induces a uniform increase in values across agents. By contrast, Weyl and Tirole (2012) argue that inventions differ along multiple dimensions in terms of the market for the products they produce. Although physical property usually has a tangible value and easily observable investments, the value of intellectual property is usually not apparent until a long process of marketing, adoption, and market testing has sorted out its value-added.

To make matters worse, charging a Harberger tax as a fraction of the total value of intellectual property requires knowing the total size of the market for the product if it were offered for free, so that the tax can be applied as a fraction of this total size. We have shown that the equilibrium asset turnover rate, which is bounded between 0 and 1, serves as a robust observable signal for the extent of allocative distortions for rival goods. Unlike the turnover rate the value of market sizes will vary by orders of magnitude for observably similar products. For example, many apps on Apple’s App Store receive only a few downloads, whereas others “go viral” and are downloaded a billion times. Without knowledge of this market size (which almost solves the problem itself, because a prize could be given directly), a Harberger tax would likely be laughably small for some markets while leaching all profits out of others.7 Thus while Harberger

7If a public authority knew the efficient market size (call it σ) for a good, our scheme would be equivalent to setting a tax equal to $p\sigma\tau$, where τ is the Harberger tax as previously and p is the price chosen by the monopolist. The Harberger tax rate required for fully efficient allocation would be $\tau = 1$, which would all eliminate monopoly profits and thus innovation incentives. A lower tax would still incent lower prices than pure intellectual property, but the innovator would be left with some rents, implementing the trade-off we analyzed above.

Even if such a scheme could be implemented, it would involve a substantially worse trade-off than with physical property, because the allocatively efficient tax is so high. However, such a system seems impractical given the difficulty of estimating σ. For example, a σ estimated at 1,000 would have no appreciable impact on the bottom line, and therefore prices of a product that ended up having a mass market. On the other hand, it would drive out all profits even at a modest 10% tax rate for a product with niche appeal to only a hundred clients.
licensing shares motivational similarities with temporal and breadth limitations on intellectual property rights, it is not easily applicable to intellectual property as such. More appropriate are more centralized schemes that rely more heavily on central administrators, such as those proposed by Kremer (1998) and Weyl and Tirole (2012).

7 Applications

In this section, we discuss three categories of applications of Harberger licensing. The first concerns license design for a class of government-owned natural resources, many of which are currently assigned by auctioning off term-limited use licenses. The second is within the private sector, concerning partial property systems “sharing economy” platforms as well as systems for asset sharing within firms. Finally, we discuss a broader implementation that could be applied economy-wide and would trade off investment incentives and allocative efficiency as in our calibrations above. Our discussion here is relatively brief; see Posner and Weyl (Forthcoming) for a detailed discussion of these applications and the relationship to existing legal institutions.

7.1 Resource rights

We believe that Harberger licenses are well-suited as an alternative scheme for allocating usage rights for publicly owned natural resources. Usage licenses for many kinds of natural resources, such as timber (Baldwin, Marshall and Richard, 1997; Athey and Levin, 2001), oil and gas drilling rights (Porter, 1995), and wireless spectrum (Milgrom, 2000), are currently allocated to private firms using auctions. A large body of recent work has been devoted to improving the design of these static auctions for efficiently allocating these usage licenses to firms; comparatively little work has analyzed the optimal design of these usage licenses. At present, most usage rights over resources take the form of fixed-term licenses. While auctions of such licenses may lead to statically optimal allocations, these licenses can inefficiently inhibit future trade, distorting the dynamic efficiency of asset allocation. These distortions are quite visible in practice; the complexity of the recent FCC incentive auction (Milgrom and Segal, 2015) derives in large part from the fact that it must simultaneously purchase licenses from existing spectrum owners and resell them to new buyers. If governments instead sold resource usage rights under Harberger licenses, firms that win licenses in static auctions would set lower markups in future periods, increasing trade frequency and thus dynamic allocative efficiency without further centralized organization.

An alternative to Harberger licensing is to shorten the length of term limits and run auctions more frequently. While Harberger licenses behave qualitatively similar to shorter term limits, we highlight a few advantages of our proposal. Firstly, term limits function by periodically removing all future ownership stake in the asset from license owners. At the end of her term
limit, the license owner has no incentives to maintain the common value of the asset. Consider a firm who owns a relatively short term-limit license for a fishery or oilfield; towards the end of the term limit, it has no ownership stake in the asset, and thus will tend to inefficiently overextract fish or oil relative to the social optimum. In contrast, even allocatively optimal Harberger tax rates are fairly low – 7% annually in our calibration – so Harberger license owners retain fairly large incentives for making common-value investments.

Secondly, Harberger licenses induce property rights which are stationary over time, which tends to outperform systems such as term limits which function by infrequently reducing property rights by large amounts. We show in Subsection 2.4 that social welfare tends to be concave in the Harberger tax level in the simple two-stage model, and Figure 1 shows that welfare is concave in tax in our dynamic calibration. Intuitively, if we set high taxes in one period and lower taxes for the next few periods, markups are high in most periods; while most trades will happen in the few high-tax periods, we will lose many valuable trades from high-value buyers and low-value sellers who happen to meets during low-tax, high-markup periods. With time-constant lower taxes, in each period some less valuable trades are lost, but buyers of sufficiently high value and sellers of sufficiently low value will be able to trade regardless of when they arrive to the market. Similar arguments show that small stationary distortions to investment incentives are generally preferable to occasional large distortions.

Harberger licensing also smooths the income that governments receive from resource rights. Instead of a large lump-sum payment from the auction of term-limit licenses, governments receive a smaller lump-sum from the auction of Harberger licenses, and a flow of Harberger tax payments over time. In our calibration, we showed that the total net present value of the license price and tax payments are not significantly affected by the tax rate. From the perspective of potential license buyers, Harberger licensing also decreases the budget and liquidity requirements for participating in markets for resource licenses, relative to long-term or perpetual licenses. In markets for perpetual ownership or long term-limit licenses over assets, license prices are approximately equal to the discounted sum of use values from the asset, hence firms that may want to use the asset only for short periods of time must nonetheless have large amounts of capital at hand to purchase and then resell these licenses. Harberger licenses have much lower prices than perpetual ownership for the same assets, so the capital outlay required to purchase Harberger licenses for short-term use is significantly lower.

For certain kinds of nonphysical resources, such as radio spectrum or Internet domain names, there may be relatively few ways in which agents can affect the common value of the resource to all potential owners. For such assets, in the context of our model, full allocative efficiency can be achieved by running auctions to rent the asset in each period, thus Harberger licensing

8 Our argument resembles that of Gilbert and Shapiro (1990), who show in the context of intellectual property rights that, since the social welfare loss from increased monopoly power in any period is likely to be convex, policies which grant innovators time-invariant decreased monopoly power over intellectual property are often preferable to policies granting full monopoly power for a limited period of time.
is dominated. Our argument in Subsection 5.3 above suggests that private-valued investment incentives should not be distorted by this system of frequent rental auctions. Nonetheless, Harberger licenses might be simpler to use in practice, given the practical difficulties of frequently running centralized auctions, as was first argued by George who said that such auctions “would require a needles extension of government” that “would risk favoritism, collusion, and corruption”; these concerns seem to have been born out by the long and cumbersome process of the recent spectrum “incentive auctions”. Moreover, concerns about common value may have some relevance even for nonphysical resources – for example, if an owner of a valuable Internet domain name invests in advertising, the persistent increase in website traffic may also benefit future owners of the domain name.

7.2 Private sector

While we have framed most of this paper in terms of the sale of government-owned assets, another natural class of applications of efficiency-enhancing Harberger licenses lies within the private sector. We discuss two such categories of applications.

The first is a partial private property system for “sharing economy” platforms, such as Zipcar and Airbnb. Such platforms currently operate by renting assets out to users for short-term use; as a result, users have no incentives to maintain the common value of these assets, and platforms engage in intensive and costly monitoring to prevent agents from damaging rented assets. In such contexts, platforms could instead allocate assets by establishing marketplaces for Harberger licenses over the assets they own.

Under such a system, a user who wishes to rent an asset would be required to purchase the Harberger license for the asset from its previous user; from the user’s perspective, the cost of the Harberger license can be thought of like a deposit payment. While assets are in use, users periodically pay some fraction of their value announcements as Harberger taxes to the platform; these tax payments resemble self-assessed rental fees. While she uses the asset, the user sets a price at which it may be reclaimed from her and transferred to the next user; she would presumably set this price high while maximally exploiting the asset, and then lower it as she begins utilizing it less. Since users expect to resell their Harberger licenses, they have partial incentives to maintain the common value of the asset, so as to keep the resale value of the asset high. Thus, partial ownership systems such as Harberger licensing may be used by sharing economy platforms to supplement costly monitoring in incenting agents to maintain the common value of shared assets. However, because the benefits of Harberger licenses relative to private ownership accrue entirely to potential future buyers, the platform would have to charge an upfront fee to members to access assets on the platform. Persuading users to pay such a fee might be challenging until the platform has a large number of assets up and running, creating a potential for coordination problems familiar from the platforms literature (Caillaud and Jullien,
Another potential class of applications in the private sector is a system of Harberger licenses for managing asset usage rights within corporations. Coase (1937) famously argued that an important reason for the existence of firms was the “transaction costs of the market.” While a large literature since his work has analyzed what these transaction costs comprise, Coase highlighted costs of bargaining avoided within firms. Such costs may naturally be interpreted as the monopoly distortion that Harberger licensing addresses, as in the double marginalization problem of Cournot (1838) and Spengler (1950) or as wasteful investments in reducing asymmetric information to avoid these distortions. Thus, firms may be seen as a form of private common property aimed at increasing allocative efficiency within the firm. Groves and Loeb (1979) take this interpretation to its logical extreme by arguing that a Vickrey auction should be used to allocate resources within firms.

However, as emphasized by Grossman and Hart (1986) and subsequent work in the property rights literature surveyed by Segal and Whinston (2013), such common ownership can reduce investment incentives of various stakeholders within the firm, just as Harberger licenses do. This suggest that a system of Harberger licenses may be an effective way to formalize and optimize internal markets for resources within firms that are often managed through informal relational contracts (Baker, Gibbons and Murphy, 2002; Levin, 2003). Because the relevant taxes would be collected by the firm and all individuals participating in the market employed by it, the necessity of gate-keeping to capture the associated efficiency benefits which limits the applicability of the platform model described above would be unlikely to be a significant concern.

7.3 Economy-wide implementation

In the previous subsections, we considered the simplest cases for applying Harberger licensing. Now we consider how broad the scope of self-assessment systems should be in the long run. For the most liquid forms of currency, government bonds and stocks, Harberger licensing is neither harmful nor beneficial: these assets carry no market power, but also require no investment. One should therefore be indifferent to applying Harberger licensing to these assets, besides the issues raised in our discussion in Subsection 6.2 above about avoiding savings distortions. On the other hand, our argument suggests the application of Harberger licensing to essentially all other forms of assets. While we typically think of much of the capital stock as perfectly liquid, substantial recent evidence suggests otherwise (Syverson, 2011). Syverson (2004) finds a standard deviation of productivity across narrowly defined industries of about 25%, suggesting substantial idiosyncratic value for assets.

Under such a system, all property would be registered in a cadaster (a property registry) with a regularly updated value. The cadaster would be made available, perhaps through a smartphone app, and the standard right of property would be replaced with a right to property.
that has not been purchased at the cadastral value, combined with a right to appropriate any
property of another at its cadastral value. Cadastral proceeds would fund the enforcement of
this system as taxes fund present-state enforcement of property law. Revenue from Harberger
tax payments could be returned to the community in any desired fashion, but it would likely
be most desirable to use the revenues to reduce or eliminate existing distortionary means of
public funds or to provide some part of the value of the asset to agents other than the owner
who might influence its value through externalities, as this would further increase the social
value created by the Harberger tax.\footnote{As we discuss above, raising such large revenues need not lead to a large redistribution of those resources, because the revenue collected could be distributed in a manner specified by rules or given back as savings or property subsidies to offset other distortions. However, once such a large revenue stream is collected, a community would not necessarily wish to disperse it with the same inequality with which capital ownership itself is presently distributed. Because the Harberger tax offers a non-distortive (actually efficiency enhancing) means of generating a large pool of revenue, some communities might use it for redistributive purposes even if its justification is not redistributive.}

Our calibrations suggest that Harberger licensing would eventually make a large impact on
aggregate welfare. To see this we briefly consider the magnitude of revenue in a world in which
all capital is owned under Harberger licenses. Suppose, following our dynamic calibration of
Section 3, the entire capital stock of the world is subject to a 2.5% annual Harberger tax. This
would generate annual revenue of approximately a third of capital income. According to Piketty
\textit{and Zucman (2014)}, capital’s share is roughly 30\% of national income in G7 countries, implying
revenue of approximately 10\% of national income annually. This would account for half of the
tax burden in the United States and would also eliminate almost a third of the value of private
capital, reducing its levels almost to the lows of the middle twentieth century.

To consider the magnitude of welfare gains, note that we found roughly 5\% welfare gains
as a fraction of asset values. Multiplying this by capital’s share of roughly 30\% gives roughly
welfare gains of 1\% of national income, or roughly $200 billion in the United States or $1 trillion
globally at purchasing power parity. We suspect this figure is a significant underestimate, as
Harberger licensing should optimally be applied not only to final assets but to financial assets
written on top of these as well, such as stock, bonds, and derivatives; while its value there would
be more limited given the greater liquidity of these assets, it would not be trivial. See Posner
\textit{and Weyl} for details.

\section{Conclusion}

In this paper, we argue the means of production should generally be owned neither in common
nor privately, but rather through a mixed system that trades off the allocative benefits of
common ownership against the investment incentives created by private ownership. We propose
Harberger licenses – a system of ownership conditional on periodic self-assessed tax payments –
as a simple and robust implementation of partial private ownership. The asset turnover rate
serves as an observable approximate sufficient statistic for choosing the tax rate, and we suggest a simple rule-of-thumb for using the turnover rate in license design: Harberger tax rates should be set at about half the turnover rates of similar assets in private markets.

Our analysis thus far considers only inanimate and not human capital. However, human capital receives a larger fraction of national income than inanimate capital and is likely as important a source of market power, given the unique talents many individual workers possess and the distortions to these talents, caused by labor income taxes. Indeed, most societies that have practiced common ownership of inanimate capital (e.g., the Israeli *kibbutzim* and the Soviet Union) have also socialized earning capacity to a significant extent. In these societies, human capital was largely directed according to social needs, rather than the choice of the human capitalist. Of course, these arrangements famously undermined human capital accumulation (Abramitzky and Lavy, 2014). Nonetheless, many methods exist for objectively assessing human capital that could be used to offer human capital subsidies to overcome this problem. In any case, partial common ownership would be a far smaller deterrent to investment than full common ownership. A fascinating question for future research is thus whether a workable system of more partial common ownership of human capital could be devised along the lines above.

Such a system would have to deal with, among other challenges, the differing amenities of different workplaces (Sorkin, 2016) that make human capitalists far from indifferent across competing purchasers of their labor. However, on the upside, it could be used not only to address distortions to labor but also to various environmental externalities impacting human life by giving a market basis for the valuation of such externalities. It would also be interesting to develop variants of Harberger licensing that could be applied to market power over variable-production goods markets, rather than just over assets, given that existing solutions to market power have proven inadequate especially in developing countries (Bergquist, 2016). For example, a government might regulate a monopolistic seller of divisible goods by requiring the monopolist to pay a tax equal to the market price she sets, multiplied by some fixed quantity \(M \). Such a policy will lead the monopolist to announce lower prices; similarly to our net trade property, the monopolist will set price higher or lower than marginal cost depending on whether \(M \) is higher or lower than the monopolist’s total quantity sold, which is observable by the government.

In this paper, we have abstracted away from a number of issues which are relevant in many asset markets. We have assumed that the common value of assets is fully observed by all participants, thus ignoring lemons problems. Our model abstracts away from the repeated strategic interactions between agents that would arise in markets where the pool of potential owners is small. We have assumed that only the current user of the asset can make investments that affect the common value of the asset, abstracting from the effects of investments by neighbors the sharing of Harberger revenue with which could encourage the investment of. We have modeled repeated trade of a single asset; certain assets such as radio spectrum display high degrees of complementarity, which may cause much greater losses from market power than
occur with single assets because of hold-out problems [Cournot, 1838; Mailath and Postelwaite, 1990; Kominers and Weyl, 2012]. Finally, as we discuss in Subsection 6.1 above, Harberger licensing does not exhaust the possibilities for mitigating market power by changing the nature of property licenses. We hope that future research will explore the value of Harberger taxation when these assumptions are relaxed and/or develop simple and robust mechanisms beyond Harberger taxation could further address these problems.

References

Appendix
A Proofs and derivations

A.1 Two-stage model

Here, we prove our statement in Subsection 2.2 that Myerson (1981)'s regularity condition is sufficient for $\frac{\partial q^*}{\partial \tau}$ to be finite for all tax values below the efficient probability of sale $\tau = 1 - F (\gamma_S)$. Myerson’s regularity condition states that marginal revenue is monotone. A monopolist seller with value γ_S for the good has revenue $(M (q) - \gamma_S) q$. Taking a derivative yields $M' (q) q + (M (q) - \gamma_S)$. Taking the second derivative, we have

$$2M' (q) + M''(q) q < 0.$$

Now consider the monopolist’s problem under a Harberger tax $\tau < 1 - F (\gamma_S)$. By Theorem 1, $q (\tau) > \tau$; hence, $0 < q (\tau) - \tau < q (\tau)$. We want to show the following quantity exists:

$$\frac{\partial q^*}{\partial \tau} = \frac{M' (q)}{2M' (q) + M''(q) (q - \tau)}.$$

So we have to show that the denominator is bounded away from 0. From our full-support assumptions on ϵ, $M' (q)$ exists and is negative for all q. If $M'' (q) \leq 0$, we know $q - \tau > 0$, so $M''(q) (q - \tau) \leq 0$, and the numerator and denominator are both strictly negative; hence, their ratio is positive and nonzero and $\frac{\partial q^*}{\partial \tau}$ exists. So suppose $M'' (q) > 0$. Then

$$2M' (q) + M''(q) (q - \tau) < 2M' (q) + M''(q) q < 0$$

Where we first use that $0 < q (\tau) - \tau < q (\tau)$, and then apply Myerson regularity. Hence, the denominator $2M' (q) + M''(q) (q - \tau)$ is strictly negative, and the ratio $\frac{\partial q^*}{\partial \tau}$ exists and is positive.

Now we turn to conditions on the cost and demand functions such that social welfare is a concave function of the tax rate. From the text, the marginal benefit of increasing the tax rate is $M (q^* (\tau)) \rho (q^* (\tau))$ and the marginal cost is $\Gamma' (1 - \tau) \tau$. Recalling that $\rho = \frac{\partial q^*}{\partial \tau}$, the second-order condition is

$$M' \rho^2 + \rho' M \rho + \Gamma'' \tau - \Gamma'.$$

The first term is always negative ($\rho > 0 > M'$) and represents the quadratic nature of the allocative distortion discussed in the text. The final term is always negative as $\Gamma' > 0$ and represents the quadratic nature of the investment distortion. The two central terms are more ambiguous. However, Fabinger and Weyl (2016) argue ρ' is typically negative for most plausible demand forms (those with a bell-shaped distribution of willingness to pay, as we assume in most calibrations) and thus, given that $M, \rho > 0$, the second term is likely to be negative as well.
The third term is ambiguous. By the inverse function theorem, given that $\Gamma = (c')^{-1}$,

$$\Gamma'' = -\frac{c'''}{(c'')^3}.$$

Assuming a convex cost function, this quantity is negative if and only if $c''' > 0$. Thus, a grossly sufficient condition (assuming ρ') for the first-order conditions to uniquely determine the optimal tax is that $c''' > 0$. However, note this term is multiplied by τ, which is typically below 10% in our calibrations. Thus c''' would have to be quite negative indeed to cause the problem to be nonconvex.

A.2 Proof of Proposition 1

Proof. The single-period value γ_t is trivially increasing in value γ_t. This fact, together with our Assumption 2 that higher γ_t’s imply uniformly higher γ_{t+1}, implies that the social planner’s V is component-wise increasing. For completeness, we sketch the fairly standard proof of this result. Similar arguments can be found in, for example, Stokey and Lucas (1989) and Smith and McCardle (2002).

Define the social planner’s Bellman operator S:

$$S \left(W \left(\gamma^S_t, \gamma^B_t \right) \right) = \max \left[\gamma^S_t + \delta \mathbb{E} \left(W \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^S_t \right), \gamma^B_t + \delta \mathbb{E} \left(W \left(\gamma^B_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^B_t \right) \right].$$

Because, by assumption, γ_t is uniformly bounded above, this expression is a bounded discounted problem, and by standard arguments, S is a contraction mapping with a unique fixed point.

Suppose W is componentwise increasing in each component. Then, supposing $\gamma^S_t > \gamma_t$, by the FOSD property of G, we have

$$\mathbb{E} \left(W \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^S_t \right) > \mathbb{E} \left(W \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^B_t \right).$$

Hence,

$$\gamma^S_t + \mathbb{E} \left(W \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^S_t \right) > \gamma^B_t + \mathbb{E} \left(W \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^S_t \right),$$

and likewise for γ^B_t. Hence $S \left(W \left(\gamma^S_t, \gamma^B_t \right) \right)$ is componentwise increasing. Hence V, the unique fixed point of S, must be componentwise increasing.

Because V is componentwise increasing and G is FOSD-increasing in γ_t, we have that $\gamma^S_t > \gamma^B_t$ implies

$$\gamma^S_t + \delta \mathbb{E} \left(V \left(\gamma^S_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^S_t \right) > \gamma^B_t + \delta \mathbb{E} \left(V \left(\gamma^B_{t+1}, \gamma^B_{t+1} \right) \mid \gamma^B_t \right).$$
Hence, the social planner’s optimal strategy in each period is to assign the asset to the agent with higher γ_t.

A.3 Dynamic model proofs

In this section, using Assumptions 1–3, we prove Theorem 2, the net trade property for the dynamic Harberger license game. Then, adding Assumption 4, we prove Theorem 3 that there is a unique equilibrium for the dynamic Harberger license game.

A.3.1 $V(\cdot)$ is strictly increasing

To begin with, we show, that any equilibrium $V(\cdot)$ must be increasing. This will allow us to consider only increasing candidate $\hat{V}(\cdot)$ functions for the remainder of the proof.

Claim 1. In any stationary equilibrium, $V(\gamma)$ is strictly increasing.

Proof. The proof is essentially the same as that of Subsection A.2. Consider a stationary equilibrium described by value function $V(\cdot)$. This defines an inverse demand function $p_{V(\cdot),F(\cdot)}(q)$, $F(\cdot)(q)$.

We will define the following Bellman operator for candidate value functions $\hat{V}(\cdot)$ for the seller’s optimization problem:

$$
R[\hat{V}(\cdot)] \equiv \max_q (q - \tau) p_{V(\cdot),F(\cdot)}(q) + (1 - q) \left[\gamma + \delta E_{G(\cdot)}[\hat{V}(\gamma') | \gamma] \right].
$$

(6)

Note that R fixes the demand distribution $p_{V(\cdot),F(\cdot)}$ at the true equilibrium value function $V(\cdot)$, and only depends on \hat{V} through the seller’s continuation value $\delta E_{G(\cdot)}[\hat{V}(\gamma') | \gamma]$. As a result, R is a standard Bellman equation satisfying Blackwell’s sufficient conditions for a contraction mapping.

Consider a candidate value function $\hat{V}(\cdot)$ which is nondecreasing in γ. Supposing $\tilde{\gamma} > \gamma$, the single-period value $(q - \tau) p_{V(\cdot),F(\cdot)}(q) + (1 - q) \gamma$ is strictly higher under $\tilde{\gamma}$ relative to γ for all q, and the continuation value $\delta E_{G(\cdot)}[\hat{V}(\gamma') | \gamma]$ is weakly higher under $\tilde{\gamma}$, since $G(\gamma' | \tilde{\gamma}) >_{\text{FOSD}} G(\gamma' | \gamma)$. Hence, $R[\hat{V}(\cdot)](\tilde{\gamma}) > R[\hat{V}(\cdot)](\gamma)$, hence $R[\hat{V}(\cdot)]$ is strictly increasing in γ. Hence R takes nondecreasing \hat{V} functions to strictly increasing \hat{V} functions; hence the true value function V, which is the unique fixed point of R, must be strictly increasing in γ.

A.3.2 The pseudo-Bellman operator \mathcal{F}

As we discuss in Subsection 3.3, stationary equilibria of the dynamic Harberger license game must satisfy two conditions. First, the sellers’ value function must be satisfied for any γ:

$$
V(\gamma) = \max_q (q - \tau) p_{V(\cdot),F(\cdot)}(q) + (1 - q) \left[\gamma + \delta E_{G(\cdot)}[V(\gamma') | \gamma] \right].
$$
Second, the WTP distribution \(p_{\nabla(\cdot),\mathcal{F}(\cdot)} \) must be consistent with the value function \(V(\gamma) \), that is,

\[
p_{\nabla(\cdot),\mathcal{F}(\cdot)}(q) = \left\{ p : p_{\nabla(\cdot),\mathcal{F}(\cdot)} \left[\gamma + \delta E_{\mathcal{G}(\cdot)} [V(\gamma') | \gamma] > p \right] = q \right\}.
\]

We will define the following *pseudo-Bellman operator* \(\mathcal{I} \):

\[
\mathcal{I} [\hat{V} (\cdot)] (\gamma) \equiv \max_q (q - \tau) \hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q) + (1 - q) \left[\gamma + \delta E_{\mathcal{G}(\cdot)} [\hat{V} (\gamma') | \gamma] \right]
\]

The operator \(\mathcal{I} \) is similar to the seller’s Bellman operator \(\mathcal{R} \) in Equation \(6 \). The difference is that \(\mathcal{R} \) fixes the inverse demand function \(p_{\nabla(\cdot),\mathcal{F}(\cdot)} (\cdot) \) at its true equilibrium value, whereas \(\mathcal{I} \) calculates the inverse demand distribution \(\hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (\cdot) \) assuming that buyers also act according to continuation value \(\hat{V} (\cdot) \). We will likewise define the “candidate optimal sale probability function” \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \) assuming continuation value \(\hat{V} (\cdot) \), as:

\[
q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \equiv \arg\max_q (q - \tau) \hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q) + (1 - q) \left[\gamma + \delta E_{\mathcal{G}(\cdot)} [\hat{V} (\gamma') | \gamma] \right]
\]

In words, \(\mathcal{I} [\hat{V} (\cdot)] \), \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\gamma_1)) \) and \(\hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q) \) describe the values and optimal behavior of buyers and sellers, assuming that the continuation value of a license owner of type \(\gamma \) in the next period is \(\hat{V} (\gamma) \). Equilibria of the Harberger license game are fixed points of the \(\mathcal{I} \) operator.

Since \(\mathcal{I} \) characterizes the equilibrium of a game rather than a single-agent optimization problem, it is not necessarily a contraction mapping, and the standard contraction-based proofs of uniqueness in bounded discounted dynamic programs do not apply. However, equilibrium existence is not a problem – Assumptions 1, 2 and 3 imply that \(\mathcal{I} \) is a smooth function of \(\hat{V} \), hence Brouwer’s fixed point theorem implies that \(\mathcal{I} \) must have a fixed point in the convex compact set of bounded \(\hat{V} \) functions.

A.3.3 \(\mathcal{I} \) Net trade property

In Claim 2 we show that, for any increasing candidate \(\hat{V} \) function, the corresponding candidate optimal sale probability \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \) respects the net trade property of Theorem 1. Since Claim 2 also applies to the true policy function \(q^* (\cdot) \), this proves Theorem 2 the dynamic net trade property.

Claim 2. (\(\mathcal{I} \) net trade property) Suppose that \(\hat{V} (\cdot) \) is strictly increasing. Then \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \) satisfies:

- If \(\tau = 1 - F (\gamma) \), we have \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) = \tau \) and \(\hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot))) = \gamma + E_{\mathcal{G}(\cdot)} [\hat{V} (\gamma') | \gamma] \)
- If \(\tau < 1 - F (\gamma) \), we have \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \geq \tau \) and \(\hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot))) \geq \gamma + E_{\mathcal{G}(\cdot)} [\hat{V} (\gamma') | \gamma] \)
- If \(\tau > 1 - F (\gamma) \), we have \(q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot)) \leq \tau \) and \(\hat{p}_{\nabla(\cdot),\mathcal{F}(\cdot)} (q_{\mathcal{I}}^* (\gamma; \hat{V} (\cdot))) \leq \gamma + E_{\mathcal{G}(\cdot)} [\hat{V} (\gamma') | \gamma] \)
Proof. We prove this by constructing an analogy to a two-stage Harberger license game. Fixing any increasing candidate value function \(\hat{V} \), the optimization problem for a license owner with value \(\gamma \) is:

\[
q_T^* (\gamma; \hat{V} (\cdot)) = \arg \max_q (q - \tau) p_{V_{(\cdot),F_{(\cdot)}}} (q) + (1 - q) \left[\gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \right]
\]

Note that, by definition, we also have \(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) = \gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \). In words, \(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \) is the WTP of buyer quantile \(F (\gamma) \), which is just the use value \(\gamma \) plus the continuation value \(\gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \). Hence, we can write \(q_T^* (\gamma; \hat{V} (\cdot)) \) as:

\[
q_T^* (\gamma; \hat{V} (\cdot)) = \arg \max_q (q - \tau) p_{V_{(\cdot),F_{(\cdot)}}} (q) + (1 - q) p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma))
\]

Subtracting the term \((1 - \tau) p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \), which does not depend on \(q \), we get:

\[
q_T^* (\gamma; \hat{V} (\cdot)) = \arg \max_q (q - \tau) \left(p_{V_{(\cdot),F_{(\cdot)}}} (q) - p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right)
\]

This can be interpreted as the optimization of a variable profit function from a two-stage Harberger license game, for a seller with use value \(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \) for keeping the asset, faced with buyer values distributed as \(p_{V_{(\cdot),F_{(\cdot)}}} (q) \), \(q \sim U [0, 1] \). Let \(H_{V_{(\cdot),F_{(\cdot)}}} (\cdot) \) represent the distribution of \(p_{V_{(\cdot),F_{(\cdot)}}} (q) \); Theorem I \([1]\) implies that:

- If \(\tau = 1 - H \left(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right) \), we have \(q_T^* (\gamma; \hat{V} (\cdot)) = \tau \) and \(p_{V_{(\cdot),F_{(\cdot)}}} (q_T^* (\gamma; \hat{V} (\cdot))) = \gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \)

- If \(\tau < 1 - H \left(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right) \), we have \(q_T^* (\gamma; \hat{V} (\cdot)) \geq \tau \) and \(p_{V_{(\cdot),F_{(\cdot)}}} (q_T^* (\gamma; \hat{V} (\cdot))) \geq \gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \)

- If \(\tau > 1 - H \left(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right) \), we have \(q_T^* (\gamma; \hat{V} (\cdot)) \leq \tau \) and \(p_{V_{(\cdot),F_{(\cdot)}}} (q_T^* (\gamma; \hat{V} (\cdot))) \leq \gamma + \delta E_{G_{(\cdot)}} [\hat{V} (\gamma') | \gamma] \)

To complete the proof, we must show that \(H \left(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right) = F (\gamma) \). Since \(p_{V_{(\cdot),F_{(\cdot)}}} (\cdot) \) is an increasing function, for a seller of value \(\gamma \),

\[
p_{V_{(\cdot),F_{(\cdot)}}} (q) \leq p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \iff q \leq F (\gamma)
\]

hence,

\[
H \left(p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right) = P \left[p_{V_{(\cdot),F_{(\cdot)}}} (q) \leq p_{V_{(\cdot),F_{(\cdot)}}} (F (\gamma)) \right] = P \left[q \leq F (\gamma) \right] = F (\gamma)
\]

While the notation is somewhat cumbersome, the intuition behind this sequence of equalities is straightforward. The WTP function \(p (\cdot) \) is an increasing function of the F-quantile \(q \). Thus, for
a license owner of type γ, the arriving buyer’s willingness to pay $p_{\hat{V}(\cdot),F(\cdot)}(q)$ is lower than the license owner’s own continuation value $p_{\hat{V}(\cdot),F(\cdot)}(F(\gamma))$ if and only if the arriving buyer has F-quantile lower than the license owner’s quantile $F(\gamma)$. Thus, the probability $H\left(p_{\hat{V}(\cdot),F(\cdot)}(F(\gamma))\right)$ that the arriving buyer’s WTP is lower than the license holder’s WTP is exactly $F(\gamma)$.

\[\Box\]

A.3.4 Proof of equilibrium uniqueness

If we impose Assumption 4, we can prove uniqueness of the dynamic Harberger license equilibrium. In Claim 3, we will show that T is a contraction mapping for any seller types γ for which $\gamma < F^{-1}(1-\tau)$; that is, for all sellers with values below the $1-\tau'$th buyer quantile. In Claim 4, we will show that the value function for these seller types can be solved for without reference to the value function above $F^{-1}(1-\tau)$. Thus, Claims 3 and 4 show that T uniquely pins down $V(\cdot)$ on $\gamma \in [0, F^{-1}(1-\tau)]$. Then, in Claim 5, we show that for any type $\tilde{\gamma} \geq F^{-1}(1-\tau)$, the derivative $V'(\tilde{\gamma})$ can be calculated using only knowledge of $V(\cdot)$ on values $\gamma \in [0, \tilde{\gamma}]$ lower than $\tilde{\gamma}$. Thus, once we know $V(\cdot)$ on the interval $\gamma \in [0, F^{-1}(1-\tau)]$, we can integrate $V'(\tilde{\gamma})$ upwards from $F^{-1}(1-\tau)$ to recover the entire unique equilibrium $V(\cdot)$ function.

Consider the distribution of entering buyer values $F(\gamma)$. We will define ρ-quantile truncations of $F(\cdot)$ as follows:

Definition. $\tilde{\gamma}(\gamma; \rho)$ is the ρ-quantile truncation of $F(\gamma)$, defined as:

$$\tilde{\gamma}(\gamma; \rho) = \begin{cases} F(\gamma) & F(\gamma) \leq \rho \\ 1 & F(\gamma) > \rho \end{cases}$$

In words, $\tilde{\gamma}(\gamma; \rho)$ takes all probability mass above the ρth quantile of F, and puts it on the ρth quantile. In the two-stage Harberger license game, sellers at quantiles below $1-\tau$ set quantile markups between their quantile $1-F^{-1}(\gamma)$ and $1-\tau$. Intuitively, then, the demand distribution at quantiles above $1-\tau$ should not affect the behavior of these sellers; in particular, we can place all probability mass above buyer quantile $1-\tau$ at the $(1-\tau)'$th quantile, and this will not affect the behavior of sellers below the $(1-\tau)'$th quantile. This is formalized in the following claim.

Claim 3. (Truncation property) Suppose that $V(\cdot)$ is a stationary equilibrium value function for the Harberger license game under tax τ, with entering buyer distribution F. Then, $V(\cdot)$ restricted to the interval $\gamma \in [0, F^{-1}(\rho)]$ is a stationary equilibrium value function for the Harberger license game under tax τ, with entering buyer distribution $\tilde{F}(\gamma; \rho)$, for any $\rho \geq 1-\tau$.

Proof. An equilibrium of $V(\cdot)$ is a fixed point of the pseudo-Bellman operator T, that is, it satisfies, for all γ:

$$V(\gamma) = \max_q (q-\tau) p_{V(\cdot),F(\cdot)}(q) + (1-q) \left[\gamma + \delta E_G(\cdot) \left[V(\gamma') | \gamma\right]\right].$$

46
We want to show that, for any such \(V \), we also have, for any \(\rho \geq 1 - \tau \),
\[
V(\gamma) = \max_{q} \left(q - \tau \right) p_{V(\cdot),\hat{f}(\gamma; \rho)}(q) + (1 - q) \left[\gamma + \delta E_{G(\cdot)}[V(\gamma') | \gamma] \right] \quad \forall \gamma \leq F^{-1}(\rho).
\]

In other words, we want to show that the truncation of \(F \) and \(V(\cdot) \) does not affect the optimization problem of any type with \(\gamma < F^{-1}(\rho) \).

Recall the definition of the WTP function:
\[
WTP(\gamma) \equiv \gamma + \delta E_{G(\cdot)}[V(\gamma') | \gamma].
\]

We have from Assumption 4 that \(G(\gamma') | \gamma \) satisfies \(\gamma' \leq \gamma \) with probability 1, so evaluating the WTP function at \(\gamma \) only requires evaluating \(V \) on the interval \([0, \gamma]\). Thus, for all \(\gamma \in [0, F^{-1}(\rho)] \), we can still evaluate WTP using \(V \) truncated to the interval \([0, F^{-1}(\rho)]\). Under \(\hat{f}(\gamma; \rho) \), the inverse demand function becomes:
\[
\tilde{p}(q; \rho) = \begin{cases}
 p(q) & 1 - q \leq \rho \\
 (1 - \rho) & 1 - q > \rho
\end{cases}
\]

Thus, by construction, the modified inverse demand function agrees with \(p \) on the interval \([0, \rho]\), that is:
\[
\tilde{p}(q; \rho) = p(q) \quad \forall \{q : 1 - q \in [0, \rho]\}.
\]

From Claim 2 under any increasing candidate \(\hat{V} \) function, any seller with quantile \(F^{-1}(\gamma) \in [0, 1 - \tau] \) chooses some \(1 - q \in [F(\gamma), 1 - \tau] \). It must then be that the behavior of the inverse demand function \(p(q) \) outside the range \(1 - q \in [F^{-1}(\gamma), 1 - \tau] \) does not affect these sellers’ optimization problem (as long as \(p(q) \) is derived from an increasing candidate \(\hat{V} \) function, i.e. is monotone). Likewise, from Claim 2 any seller quantile \(F(\gamma) \in [0, 1] \) chooses some \(1 - q \in [1 - \tau, F(\gamma)] \), hence the behavior of \(p(q) \) outside the range \(1 - q \in [1 - \tau, F(\gamma)] \) does not affect the optimization problem of seller value \(F^{-1}(\gamma) \).

In the \(\rho \)-truncated problem, sellers with values \(F(\gamma) \leq 1 - \tau \) care about \(p(q) \) in the range \([0, 1 - \tau] \), and sellers with values \(1 - \tau \leq F(\gamma) \leq \rho \) care about \(p(q) \) in the range \([1 - \tau, \rho] \). Since \(\tilde{p}(q; \rho) = p(q) \) on the interval \([0, \rho] \), \(\tilde{p}(q; \rho) \) is identical to \(p(q) \) from the perspective of all sellers types with quantiles \(F^{-1}(\gamma) \in [0, \rho] \). Hence there is no seller type in the \(\rho \)-truncated problem whose optimization problem is affected by the truncation of \(p(q) \). Thus, any optimal policy \(q^*(\gamma) \) and value function \(V(\gamma) \) in the original problem remains optimal in the truncated problem, proving the claim.

We will now consider the most extreme possible truncation, \(\rho = 1 - \tau \). Under this truncation, there are no types with values strictly above the \((1 - \tau)\)th quantile; thus, all seller types in the truncated interval are net sellers. In the following claim, we use the net seller property to show
that \mathcal{T} is a contraction mapping on the $(1 - \tau)$-truncated problem.

Claim 4. (Contraction property) For any $\tau, F(\cdot)$, consider the $(1 - \tau)$-truncated problem, with entering buyer distribution $\tilde{F}(\gamma, 1 - \tau)$. \mathcal{T} is a contraction mapping on this problem, hence admits a unique fixed point. Moreover, the unique fixed point $V(\cdot)$ of \mathcal{T} must be continuous.

Proof. Once again, \mathcal{T} is:

$$
\mathcal{T} [\hat{V}] (\gamma) = \max_q (q - \tau) p_{\hat{\gamma}(\cdot), F(\cdot)} (q) + (1 - q) \left[\gamma + \delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] \right].
$$

Consider \hat{V}, \tilde{V} s.t. $\sup_{\gamma} |\hat{V}(\gamma) - \tilde{V}(\gamma)| \leq a$. We want to bound the sup norm difference between $\mathcal{T} [\hat{V}] (\gamma)$ and $\mathcal{T} [\tilde{V}] (\gamma)$. First, note that from the definition of $p_{\hat{\gamma}(\cdot), F(\cdot)} (\cdot)$,

$$
p_{\hat{\gamma}(\cdot), F(\cdot)} (q) = \begin{cases} p : p_{\hat{\gamma}(\cdot), F(\cdot)} [\gamma + \delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] > p] = q \end{cases},
$$

hence we have that

$$
|p_{\hat{\gamma}(\cdot), F(\cdot)} (q) - p_{\hat{\gamma}(\cdot), F(\cdot)} (\tilde{q})| \leq |\delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] - \delta \mathbb{E}_{G(\cdot)} [\tilde{V} (\gamma') | \gamma]| \leq \delta a.
$$

Now, writing $\mathcal{T} [\hat{V}]$:

$$
\mathcal{T} [\hat{V}] (\gamma) = \left[q^{*}_{\tilde{T}} (\gamma; \hat{V}) - \tau \right] p_{\hat{\gamma}(\cdot), F(\cdot)} \left(q^{*}_{\tilde{T}} (\gamma; \hat{V}) \right) + (1 - q^{*}_{\tilde{T}} (\gamma; \hat{V})) \left[\gamma + \delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] \right].
$$

We will show that, if under \hat{V} we fix the sale probability at $q^{*}_{\tilde{T}} (\gamma; \hat{V})$, we lose at most δa. Hence the sup norm difference between $T [\hat{V}], T [\tilde{V}]$ is at most δa.

We can separately deal with the “buyer” inverse demand and “seller” continuation value terms. For the seller’s continuation value term, note that:

$$
\gamma + \delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] \leq \gamma + \delta \mathbb{E}_{G(\cdot)} [\tilde{V} (\gamma') | \gamma] + \delta a.
$$

Hence,

$$
(1 - q^{*}_{\tilde{T}} (\gamma; \hat{V})) \left[\gamma + \delta \mathbb{E}_{G(\cdot)} [\hat{V} (\gamma') | \gamma] \right] \leq
(1 - q^{*}_{\tilde{T}} (\gamma; \hat{V})) \left[\gamma + \delta \mathbb{E}_{G(\cdot)} [\tilde{V} (\gamma') | \gamma] \right] + (1 - q^{*}_{\tilde{T}} (\gamma; \hat{V})) \delta a
$$

For the buyer inverse demand term,

$$
[q^{*}_{\tilde{T}} (\gamma; \hat{V}) - \tau] p_{\hat{\gamma}(\cdot), F(\cdot)} \left(q^{*}_{\tilde{T}} (\gamma; \hat{V}) \right) \leq
[q^{*}_{\tilde{T}} (\gamma; \hat{V}) - \tau] p_{\hat{\gamma}(\cdot), F(\cdot)} \left(q^{*}_{\tilde{T}} (\gamma; \hat{V}) \right) + q^{*}_{\tilde{T}} (\gamma; \hat{V}) - \tau | \delta a
$$

48
Adding these inequalities, we have that:

\[
\mathcal{T} [\hat{V}] (\gamma) = \left[q^*_T (\gamma; \hat{V}) - \tau \right] p_{\mathcal{V}^{(\cdot)}, F^{(\cdot)}} (q^*_T (\gamma; \hat{V})) + (1 - q^*_T (\gamma; \hat{V})) \left[\gamma + \delta \mathbb{E}_{G^{(\cdot)}} [\hat{V} (\gamma') \mid \gamma] \right] \leq \mathcal{T} [\bar{V}] (\gamma) + (1 - q^*_T (\gamma; \hat{V})) \delta a + | q^*_T (\gamma; \hat{V}) - \tau | \delta a.
\]

By Claim 2, we know that all sellers in the truncated range are net sellers, that is, \(1 - q^*_T (\gamma; \hat{V}) \leq 1 - \tau \), or \(q^*_T (\gamma; \hat{V}) \geq \tau \). Hence \(| q^*_T (\gamma; \hat{V}) - \tau | < | q^*_T (\gamma; \hat{V}) | \), hence we have:

\[
(1 - q^*_T (\gamma; \hat{V})) \delta a + | q^*_T (\gamma; \hat{V}) - \tau | \delta a \leq | (1 - q^*_T (\gamma; \hat{V})) | \delta a + | q^*_T (\gamma; \hat{V}) | \delta a \leq \delta a. \tag{8}
\]

We have thus shown that, for all \(\gamma \),

\[
\mathcal{T} [\hat{V}] (\gamma) \leq \mathcal{T} [\bar{V}] (\gamma) + \delta a.
\]

\(\hat{V} \) and \(\bar{V} \) were arbitrary, so by switching their roles we get:

\[
\mathcal{T} [\hat{V}] (\gamma) \leq \mathcal{T} [\bar{V}] (\gamma) + \delta a \implies \sup_{\gamma} [\mathcal{T} [\bar{V}] (\gamma) - \mathcal{T} [\hat{V}] (\gamma)] \leq \delta a.
\]

Hence \(\mathcal{T} \) is a contraction mapping of modulus \(\delta \).

To show that the unique fixed point \(\bar{V} (\cdot) \) must be continuous, we will show that for an increasing but possibly discontinuous candidate value function \(\hat{V} (\cdot) \), \(\mathcal{T} [\hat{V}] \) must be continuous. Once again, \(\mathcal{T} \) is:

\[
\mathcal{T} [\hat{V}] = \max_q (q - \tau) p_{\mathcal{V}^{(\cdot)}, F^{(\cdot)}} (q) + (1 - q) \left[\gamma + \delta \mathbb{E}_{G^{(\cdot)}} [\hat{V} (\gamma') \mid \gamma] \right].
\]

We need only to show that \(\mathbb{E}_{G^{(\cdot)}} [\hat{V} (\gamma') \mid \gamma] \) is continuous in \(\gamma \), since all other components of the maximand are continuous in \(\gamma \). Since \(\bar{V} \) is strictly increasing, the generalized inverse function \(\hat{\gamma} (v) \equiv \arg \min_{\gamma} | \bar{V} (\gamma) - v | \) is everywhere well-defined. Since \(\hat{V} (\cdot) \) is bounded, the “layer cake” representation of its expected value obtains. Letting \(\bar{V} \equiv \max_{\gamma} \hat{V} (\gamma) \), we have\(^{10} \)

\[
\mathbb{E}_{G^{(\cdot)}} [\hat{V} (\gamma') \mid \gamma] = \int_0^\bar{V} 1 - G (\hat{\gamma} (v) \mid \gamma) \, dv.
\]

Since \(G (\gamma' \mid \gamma) \) is continuous in \(\gamma \) for any \(\gamma' \), the integral \(\int_0^\bar{V} G (\hat{\gamma} (v) \mid \gamma) \, dv \) is also continuous in

\(^{10}\)This definition of the layer-cake integral is slightly wrong, failing if \(\hat{V} (\cdot) \) and \(G (\cdot) \) have discontinuities at the same value of \(\gamma \). This can be fixed by redefining \(G \) such that that probability mass falls at the correct side of each \(\hat{V} \) discontinuity.
Remark. Equation 8 is the step where the contraction property fails in general, and is why we need this truncation argument. Suppose for example \(\tau = 1 \), so that \(\tau > q \). Then the continuation value term has modulus \((1 - q) \delta a\) and the buyer price term has modulus \(|q - \tau| \delta a = |1 - q| \delta a\). So the total modulus bound is \(2 (1 - q) \delta a\), and we can’t guarantee that \(T \) is a contraction.

Claim 4 shows that the equilibrium value function \(V (\cdot) \) is uniquely pinned down in the \((1 - \tau)\)-truncated problem, and Claim 3 shows that the equilibrium \(V (\cdot) \) functions from the original and truncated problems must agree. Hence we have shown that the equilibrium \(V (\cdot) \) is unique at least in the truncated interval \([0, F^{-1}(1 - \tau)]\). In Claim 5, we show that, in any \(\rho \)-truncated equilibrium, we can calculate the derivative of the value function \(\frac{dV}{d\gamma} |_{\gamma = F^{-1}(\rho)} \) at the boundary type \(F^{-1}(\rho) \).

Claim 5. (Envelope theorem) The envelope theorem applies to any equilibrium:

\[
\frac{dV}{d\gamma} = \frac{\partial}{\partial \gamma} \left[(q^*(\gamma) - \tau) p_{V(\cdot),F(\cdot)} (q^*(\gamma)) + (1 - q^*(\gamma)) \left[\gamma + \delta E_{G(\cdot)} [V (\gamma') | \gamma] \right] \right] \\
= (1 - q^*(\gamma)) \left[1 + \delta \frac{\partial E_{G(\cdot)} [V (\gamma') | \gamma]}{\partial \gamma} \right].
\]

(9)

Proof. Following Milgrom and Segal (2002), we need to show that the conjectured derivative:

\[(1 - q) \left[1 + \delta \frac{\partial E_{G(\cdot)} [V (\gamma') | \gamma]}{\partial \gamma} \right]\]

is finite for any choice of \(q \). Using the layer cake representation once again:

\[E_{G(\cdot)} [V (\gamma') | \gamma] = \int_0^\gamma 1 - G \left(\hat{f} (v) | \gamma \right) \, dv.\]

Leibniz’ formula implies that

\[\frac{\partial E_{G(\cdot)} [V (\gamma') | \gamma]}{\partial \gamma} = - \int_0^\gamma \frac{\partial G \left(\hat{f} (v) | \gamma \right)}{\partial \gamma} \, dv.\]

We have from Assumption 3 that \(\frac{\partial G \left(\hat{f} (v) | \gamma \right)}{\partial \gamma} \) exists for any \(v \), hence this quantity is finite for any \(q \), and thus the envelope theorem applies.

Thus, in any \(\rho \)-truncated equilibrium, we can evaluate \(q^*(\gamma) \) for the boundary type \(\gamma = F^{-1}(\rho) \). Moreover, since Assumption 4 the transition probability distribution \(G \) satisfies that

\[\text{This follows even without assuming differentiability of } G, \text{ from a “set excision” argument: for any } \epsilon, \text{ there is a } \delta \text{ satisfying continuity for } G \left(\hat{f} (v) | \gamma \right) \text{ except on a set of arbitrarily small } v \text{-measure, and } G \text{ is bounded between } [0, 1] \text{ on the excised set.} \]
\(\gamma_{t+1} < \gamma_t \) a.s., the expectation \(E_{G(\cdot)} [V(\gamma') \mid \gamma] \) puts positive probability only on values \(\gamma' < \gamma \). Hence, in any \(\rho \)-truncated equilibrium, we can evaluate the derivative \(\frac{dV}{d\gamma} \) for the boundary type \(\gamma = F^{-1}(\rho) \) using only knowledge of the equilibrium \(V \) on the truncated interval \([0, F^{-1}(\rho)]\). Thus, after solving for \(V \) on the interval \([0, F^{-1}(1-\tau)]\) using the contraction mapping of Claim 4, we can integrate the envelope formula (9) to recover the rest of the equilibrium \(V(\cdot) \) function:

\[
V(\gamma) = \int_{F^{-1}(1-\tau)}^{F^{-1}(\gamma)} (1 - q^*(\bar{\gamma})) \left[1 + \delta \frac{\partial E_{G(\cdot)} [V(\gamma') \mid \gamma]}{\partial \gamma} \right] d\bar{\gamma} \forall \gamma > F^{-1}(1-\tau).
\]

We have thus proved Theorem 3 for any \(\tau, F(\gamma), G(\gamma' \mid \gamma) \) satisfying our assumptions, there is a unique equilibrium of the dynamic Harberger license game.

Remark. We used Assumption 4 at two points. First, the proof of Claim 3 requires that the \(\mathcal{T} \) operator applied to the truncated value distribution does not reference values of \(\gamma \) above the truncation quantile. Second, to evaluate the envelope derivative formula in Claim 5, we once again need to be able to reference only values of \(\gamma \) below the truncation quantile.

A.4 Persistent investment

In order to accomodate investment, we need a nonstationary definition of equilibria in the Harberger license game. Let \(\zeta = (\zeta_0, \zeta_1, \zeta_2 \ldots) \) represent the path of common use values over time, and suppose that this is common knowledge. The use value for any agent \(A_t \) in any period is thus \(\zeta_t + \gamma_t A_t \). We will define the nonstationary value function \(V_t(\gamma_t, \zeta) \) as the value of being a seller with type \(\gamma_t \) in period \(t \), if the path of common use values is \(\zeta \). Analogously to above, we will define the inverse demand function in period \(t \) as:

\[
p_t V_t(\cdot, \zeta, F(\cdot)) (q_t) = \left\{ q_t : p_{V_{t+1}(\cdot, \zeta, F(\cdot))} \left[\gamma_{t+1} B_t + \zeta_t + \delta E_{G(\cdot)} \left[V_{t+1}(\gamma_{t+1}, \zeta) \mid \gamma_t \right] > p_t \right] = q_t \right\}.
\]

Equilibrium then requires that, in each history,

\[
V_t(\gamma_t, \zeta) = \max_{q_t} (q_t - \tau) p_{V_{t+1}(\cdot, \zeta, F(\cdot))} (q_t) + (1-q_t) \left[\gamma_t + \zeta_t + \delta E_{G(\cdot)} \left[V_{t+1}(\gamma_{t+1}, \zeta) \mid \gamma_t \right] \right]. \tag{10}\]

We conjecture an equilibrium of this game of the following form:

\[
V_t(\gamma_t, \zeta) = V(\gamma) + \sum_{t'=0}^{\infty} \delta^{t'} (1-\tau)^{t'+1} \zeta_{t+t'}.
\]

One can verify that if \(V(\cdot) \) satisfies the “allocative” equilibrium Equation (7) then \(V_t(\gamma_t, \zeta_t) \) satisfies Equation (10). Intuitively, as in the two-stage case, if the tax is \(\tau \) agent \(A_t \) only owns \((1-\tau)\) of the asset in period \(t \). However, if the asset has some common value in period \(t + t' \), agent \(A_t \) has to pay taxes \(t' \) times on the asset before enjoying its use value; hence she effectively
only owns \((1 - \tau)^{t+1}\) of any common value of the asset in period \(t'\).

For simplicity, we analyze the investment decision of the \(t = 0\) agent; the problem is additive and identical for all agents in all periods, hence all agents make the same choice of investment in each period. Suppose investment level \(\eta_0\) produces common value \(\zeta_t = H_t(\eta)\) in the future. Agents’ FOC for investment is:

\[
c'(\eta_0) = \frac{\partial V_0(\gamma_t, \zeta(\eta_0))}{\partial \eta_0}.
\]

This implies that

\[
c'(\eta_0) = \sum_{t=0}^{\infty} \delta^t (1 - \tau)^{t+1} H'_t(\eta_0), \quad (11)
\]

proving Proposition 2.

B Calibration details

B.1 Persistent investment algebra

In our calibrations, we assume that investment decays geometrically at rate \(\theta < 1\); that is, persistent investment \(\eta_0\) generates period \(t\) value:

\[H_t(\eta_0) = \theta^t \eta_0.\]

Hence, following Equation 11 in Appendix A.4, the present value of a unit of investment is:

\[
\sum_{t=0}^{\infty} \eta_0 \delta^t \theta^t (1 - \tau)^{t+1} = \frac{\eta_0 (1 - \tau)}{1 - \delta \theta (1 - \tau)},
\]

and agents’ investment FOCs are thus:

\[
c'(\eta_0) = \frac{1 - \tau}{1 - \delta \theta (1 - \tau)}.
\]

We will suppose that the cost function is:

\[
c(\eta) = \frac{\eta^2}{2 (1 - \delta \theta) g'}
\]
for some value of parameter g. This is a convenient functional form which leads to a simple analytical solution. Total social investment welfare for investment level η_0 is

$$\text{Investment Welfare} = \left(\eta_0 - \frac{\eta_0^2}{2g} \right) \left(\frac{1}{1 - \delta \theta} \right). \quad (12)$$

The socially optimal level of investment is $\eta_0 = g$. The maximum possible investment NPV is thus:

$$\frac{g}{2 (1 - \delta \theta)}.$$

As we discuss in Subsection 4.1, we choose g such that the maximum possible net present value of investment is some target fraction invfrac of the average transaction price.

Given some tax level τ, constant for all time, the seller’s FOC for investment is:

$$\eta \left(1 - \delta \theta \right) g = \frac{1 - \tau}{1 - \delta \theta (1 - \tau)},$$

$$\implies \eta = g \frac{(1 - \tau)(1 - \delta \theta)}{1 - \delta \theta (1 - \tau)}.$$

We can plug this into Equation (12) to calculate total investment welfare for any given value of τ.

B.2 Numerical procedures

As we discuss in Appendix A.3, the equilibria of the dynamic Harberger license game are the unique fixed points of the pseudo-Bellman operator T:

$$T \left[\hat{V} \right] = \max_q (q - \tau) p_{\hat{V}(\cdot), F(\cdot)}(q) + (1 - q) \left[\gamma + \delta \mathbb{E}_{G(\cdot)} \left[\hat{V} (\gamma') | \gamma \right] \right].$$

While our proof of uniqueness in Subsection A.3 involves a multiple-step procedure involving truncation of the buyer value distribution, in practice, for buyer value distributions $F(\cdot)$ supported on discrete grids, iteratively applying T rapidly converges to a fixed point V. Thus, we numerically solve our calibrations by iterating T on grid-supported F distributions.

We use gradient descent with our numerical equilibrium solver function to find moments σ, β to match the $sdmean$ and $saleprob$ moments, as we describe in Subsection 4.1 of the text. Given a candidate value function \hat{V} and decay rate β, we can evaluate the continuation value $\mathbb{E}_{G(\cdot)} \left[\hat{V} (\gamma') | \gamma \right]$ for any type γ, and thus also the inverse demand function $p_{\hat{V}(\cdot), F(\cdot)}(q)$. Thus, we can find the optimal sale probability $q^*_T(\gamma; \hat{V})$ for any \hat{V}, and thus calculate $T(\hat{V})$. Starting from a linearly increasing $V(\cdot)$ function, we iteratively apply T until convergence, defined as:

$$\sup_{\gamma} \left| T \left[V \left(\gamma \right) \right] - V(\gamma) \right| < 10^{-3}.$$
Once we have solved for \(V(\gamma) \), this gives us equilibrium sale probability functions \(q^*(\gamma, V) \) for every type \(\gamma \). Together, the equilibrium \(q^*(\gamma, V) \), the transition probability distribution \(G(\gamma' | \gamma) \) and the distribution of entering buyer values \(F(\gamma) \) define an ergodic discrete state Markov chain over values \(\gamma \) of the period-\(t \) owner of the asset \(S_t \). We construct this transition probability matrix of this Markov chain, and solve for its unique stationary distribution, which we call \(H_\tau(\gamma) \). We plot these stationary distributions for various values of \(\tau \) in Figure 2.

Once we have solved for the equilibrium \(V(\cdot) \), we can recover the equilibrium sale probability function \(q^*(\gamma, V) \) and inverse demand function \(p_{V(\cdot),F(\cdot)}(\cdot) \), and we can use these, together with \(H_\tau(\gamma) \), to recover the stationary averages of various quantities that we plot in Figure 3. Specifically, these quantities are averages of the following variables with respect to \(H_\tau(\gamma) \):

- **Use value**: \(\gamma + \eta \)
- **Sale probability**: \(q^*(\gamma, V) \)
- **Quantile markup**: \((1 - q^*(\gamma, V)) - (1 - F(\gamma)) \)
- **Tax revenue**: \(\tau p_{V(\cdot),F(\cdot)}(q^*(\gamma, V)) \)

For stationary average use values, if sale occurs in period \(t \), we should use the buyer’s use value, not the seller’s, in calculating the stationary average. This is accommodated by multiplying the stationary distribution \(H_\tau(\gamma) \) by a “buyer transition” adjustment matrix, which reflects the probability that seller type \(\gamma \) “transitions” through sale of the good to any buyer type \(\gamma' \) with \(p_{V(\cdot),F(\cdot)}(1 - F(\gamma')) > p_{V(\cdot),F(\cdot)}(q^*(\gamma, V)) \).

For asset prices, we observe in the real world asset prices only for successful transactions; correspondingly, we would like to take an average of asset prices weighted by the probability of sale for each seller value \(\gamma \). Thus, average asset prices in Figure 3, panel 2 are calculated as:

\[
\frac{\int p_{V(\cdot),F(\cdot)}(q^*(\gamma, V)) q^*(\gamma, V) \, dH_\tau(\gamma)}{\int q^*(\gamma, V) \, dH_\tau(\gamma)}.
\]

We include investment value in the asset price by multiplying investment flow value by a factor \(\frac{1}{1 - \delta (1 - \tau)} \), and then adding the flow cost of investment. Note that, since taxes are collected regardless of sale, we do not weight offered prices by sale probabilities \(q^*(\gamma, V) \) when we calculate average tax revenues. Values labelled “NPV” are calculated by taking average flow values and multiplying by \(\frac{1}{1 - \delta} \).

For the sensitivity graphs in Figure 4, in order to vary the sdmean moment, for a grid of values of \(\sigma \), we search for a value of \(\beta \) which keeps saleprob at its initial calibration value while varying sdmean. Likewise, for the saleprob graphs, we use a grid of \(\beta \) values, searching for \(\sigma \) values to vary saleprob while holding sdmean constant. Note from Figure 3, panel 1 that welfare is quite flat about the allocative and total welfare maximizing tax values. Thus, it is
difficult to precisely pin down the values of optimal taxes, and some numerical error is visible in Figure 4.

B.3 Alternative transition distributions

For the baseline specification, we assume the following: if an agent has value γ_t in period t, her value in period $t+1$ is $\chi \gamma_t$, where χ has a Beta distribution with shape parameters 10β, $10(1-\beta)$. Thus, the expected value of γ_{t+1} is $\beta \gamma_t$. We chose the other shape parameter 10 somewhat arbitrarily; changing this shape parameter has very small effects on the results. In this specification, β is chosen using our numerical moment-matching procedure.

We also test a number of alternative transition processes. We use a smooth decay process with some probability of values increasing; we suppose that γ_{t+1} is generated as $1.1\chi \gamma_t$, where χ is Beta-distributed with shape parameters 10β, $10(1-\beta)$. Thus, the mean of γ_{t+1} is still $\beta \gamma_t$, but values have some probability of increasing. We will refer to this as Up–drift smooth. While we needed Assumption 4 that values decrease to prove uniqueness of equilibria, we were able to solve for equilibria for this specification using the pseudo-Bellman iteration, and the equilibria appear not to depend on the starting values we chose.

We also test two specifications in which values jump to 0 with some probability ω. For specification No–drift jump, values stay constant, $\gamma_{t+1} = \gamma_t$, with probability $1-\omega$, and values jump to 0, $\gamma_{t+1} = 0$, with probability ω. For specification Drift jump, values jump to 0 with probability ω, and otherwise drift downwards: $\gamma_{t+1} = \chi \gamma_t$, where χ is Beta-distributed with shape parameters 9.7, 0.3. Specification Drift jump can be thought of as in-between our baseline specification and the more extreme No–drift jump specification. In both cases, as in our baseline specification, we choose the jump parameter ω using numerical moment-matching.

We report results from all four specifications in Table 2, assuming throughout that invfrac = 40%. Results from the Up–drift smooth are very similar to those from the baseline specification, suggesting that our results are not very sensitive to relaxing Assumption 4.

For the two jump specifications, welfare gains are smaller than the smooth transition process specifications, and the optimal Harberger tax rate is accordingly lower. There are essentially two reasons for this. Firstly, asset price dispersion is higher under the jump process for any given value of the log standard deviation σ; thus, the moment-matching procedure infers a smaller value for σ, so the magnitude of allocative value dispersion is smaller. The total possible allocative welfare gains as a fraction of the mean asset price are also correspondingly smaller.

Secondly, under the jump processes, the allocatively optimal Harberger tax achieves a smaller fraction of all possible allocative gains. This is likely because the jump processes induce bimodal stationary value distributions, in which a group of agents have relatively high values, and a mass of agents have value 0. In such settings, implementing fully efficient trade would require setting low Harberger taxes for the high value license owners and 100% Harberger taxes for
Table 2: Alternative specifications

<table>
<thead>
<tr>
<th>Transition process</th>
<th>Optimal (\tau)</th>
<th>Total gain</th>
<th>Alloc gain</th>
<th>Inv loss</th>
<th>2.5% tax gain</th>
<th>% max gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>3.6%</td>
<td>4.63%</td>
<td>5.66%</td>
<td>-1.04%</td>
<td>4.39%</td>
<td>76.10%</td>
</tr>
<tr>
<td>Up-drift smooth</td>
<td>3.4%</td>
<td>4.20%</td>
<td>5.14%</td>
<td>-0.94%</td>
<td>4.05%</td>
<td>71.80%</td>
</tr>
<tr>
<td>Jump</td>
<td>2.8%</td>
<td>3.13%</td>
<td>3.79%</td>
<td>-0.66%</td>
<td>3.10%</td>
<td>69.00%</td>
</tr>
<tr>
<td>No-drift jump</td>
<td>1.5%</td>
<td>1.76%</td>
<td>1.98%</td>
<td>-0.21%</td>
<td>1.44%</td>
<td>45.70%</td>
</tr>
</tbody>
</table>

Notes. All gains are in units of percentages of average asset prices at \(\tau = 0 \). For all specifications, we use \(\text{Invfrac} = 40\% \). The “% Max Gain” column shows what fraction of total possible allocative welfare gains, under the social planner’s optimum assuming all welfare-improving trades are made, are captured by the allocatively optimal Harberger tax.

the low value license owners; this is not approximated well by any constant Harberger tax rate. In constrast, the stationary distribution under the baseline transition process, shown in Figure 2 is unimodal, hence a single tax rate is near optimal for most license owners in stationary equilibrium. Thus, Harberger licensing may function worse in settings where agents’ values for assets evolve over time by making large jumps with small probability, rather than gradual stochastic decay. However, for both jump processes, a 2.5% tax rate is near optimal, and improves total welfare by above 1% of baseline asset prices.