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Forthcoming in Criminology and Public Policy (2007) 
 
 
 

Reefer Madness: 
Broken Windows Policing and Misdemeanor Marijuana 

Arrests in New York City, 1989–2000. 
 

Bernard E. Harcourt1 and Jens Ludwig2 3 
 
 
 The pattern of misdemeanor marijuana arrests in New York City since the 

introduction of broken windows policing in 1994—nicely documented in Andrew Golub, 

Bruce Johnson, and Eloise Dunlap’s article The Race/Ethnicity Disparity in Misdemeanor 

Marijuana Arrests in New York City—is almost enough to make an outside observer ask: 

Who thought of this idea in the first place? And what were they smoking? 

By the year 2000, arrests on misdemeanor charges of smoking marijuana in public 

view (MPV) had reached a peak of 51,267 for the city, up 2,670 percent from 1,851 

arrests in 1994. In 1993, the year before broken-windows policing was implemented, a 

New York City police precinct made, on average, 10 MPV arrests per year; by 2000, the 

police precincts were averaging 644 MPV arrests per year—almost 2 arrests per day per 

precinct. These misdemeanor MPV arrests accounted for 15 percent of all felony and 

misdemeanor arrests in New York City in 2000. That same year, New York City 

marijuana arrests represented 92 percent of the total 67,088 marijuana-related arrests in 

the State of New York.4  

In addition, the pattern of arrests disproportionately targeted African-Americans 

and Hispanics in relation to their representation in the resident population. Although both 

                                                 
1 Professor of Law, University of Chicago. 
2 Professor of Public Policy, Georgetown University and Faculty Research Fellow, National Bureau of 
Economic Research. 
3 Special thanks to Andrew Golub for sharing the time series data on misdemeanor arrests for smoking 
marijuana in public view and for comments; to Stephen Schacht at NORC for comments and guidance; and 
to James Lindgren and Sherod Thaxton for comments and suggestions.  
4 Golub, Johnson, and Dunlap 2006:___.  
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groups each represent about 25 percent of New York City residents, they compose 52 and 

32 percent of MPV arrestees for 2000-2003 respectively. African-American and Hispanic 

MPV arrestees have also fared worse in the criminal justice system: they were more 

likely than their white counterparts to be detained before arraignment (2.66 and 1.85 

times more likely, respectively), convicted (both twice as likely) and sentenced to 

additional jail time (4 and 3 times more likely, respectively).5 In a city in which tensions 

between the police and the minority community were already running high as a result of 

(potentially productive) NYPD efforts targeted at guns and serious violent crime, 

stopping minority residents at disproportionately high rates for smoking marijuana in 

public seemed unlikely to do much to ease this friction. 

 We have reviewed and analyzed the MPV arrest data and have only one thing to 

add: In addition to imposing costs disproportionately on New York City’s minority 

residents, there is no good evidence that this “reefer madness” policing strategy 

contributed to the decline in the sorts of serious crimes that are of greatest public concern 

in New York City. In order to justify the substantial race disparity in marijuana arrests, 

the NYPD must believe that some important social objective is being accomplished. This 

larger objective is presumably not reducing marijuana consumption per se, and seems 

more likely to be the intention of reducing more serious offenses under the standard 

“broken windows” argument articulated nearly 25 years ago by James Q. Wilson and 

George Kelling.6 Perhaps the belief that this policing strategy can reduce serious crime 

might also stem from the hypothesized link between drug markets and violence, even 

though most criminologists believe that violence is much less common in the market for 

marijuana than that for, say, crack cocaine. The psychopharmacological effects of 

marijuana use on criminal or violent behavior are also believed to be much less 

pronounced than with many other commonly-used drugs, including alcohol.  

 In any case, whatever the conceptual underpinning of this marijuana policing 

strategy, we have analyzed the MPV arrests building on our previous research on broken 

windows policing7 and, using a number of different statistical approaches on these MPV 

arrest data, we find no good evidence that the MPV arrests are associated with reductions 
                                                 
5 Golub, Johnson, and Dunlap 2006:___. 
6 Wilson and Kelling 1982. 
7 Harcourt and Ludwig 2006. 
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in serious violent or property crimes in the city. As a result New York City’s marijuana 

policing strategy seems likely to simply divert scarce police resources away from more 

effective approaches that research suggests is capable of reducing real crime.8  

 The policy recommendations that Golub, Johnson, and Dunlap make—especially 

reducing the intensity of MPV patrolling and making the MPV charge a violation rather 

than a misdemeanor—seem consistent with two of the primary goals that should animate 

any major metropolitan police department, namely crime control and fairness. One other 

reform that should be added to the list concerns the legal standard of review in cases 

involving such pronounced racial or ethnic disparities in the criminal justice system: 

Courts reviewing claims of racial or ethnic discrimination in policing, where the prima 

facie evidence of discrimination cuts across several layers of outcomes (arrest, detention, 

conviction, and additional incarceration) should relax the requirement that the 

complainant prove actual discriminatory intent on the part of a particular actor, and 

instead allow for an inference of intent where the government has failed to justify or 

explain a number of those disparities.9 This change would effectively introduce a Batson-

type analysis in court review of claims of police discrimination and shift the burden of 

explaining gross disparities on the party with the most complete information—in this 

case, the NYPD.  

 
I. The Effects of Policing Public Marijuana Smoking on Crime 

 
At our request, Andrew Golub generously shared the time series data on 

misdemeanor MPV arrests in New York City from 1980 to 2003. We merged these 

records with a dataset we had put together previously for research on broken-windows 

policing—data which we analyzed in our article Broken Windows: New Evidence from 

New York City and A Five-City Social Experiment published in the University of Chicago 

Law Review in 2006. We discuss our data collection in an appendix to this study, but 

here move directly to the results of our statistical analyses.  

 At first glance a standard panel-data analysis seems to provide some support for 

the belief that stepped-up enforcement of MPV offenses contributes to a decline in more 
                                                 
8 For a review of those approaches, see Sherman, 2002; Cohen and Ludwig, 2003. 
9 For an argument to this effect in the context of racial profiling more generally, see Harcourt 2004: 1346—
1354.  
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serious offenses. As in our earlier study published in the University of Chicago Law 

Review, which re-examined and ultimately rejected Kelling and Sousa’s (2001) claim 

that broken windows policing was a major driver for the crime drop in New York City, 

we use repeated cross-sections for the city’s 75 police precincts over the course of the 

1990s. But now instead of relating precinct counts for serious offenses to overall 

misdemeanor arrests, we focus more narrowly on misdemeanor MPV arrests to test the 

hypothesis that focused anti-pot enforcement might be more effective than a more general 

“broken windows” misdemeanor strategy. Our specific estimating equation is as follows: 

 
(1) CRIMEpy = α + β MPV ARRESTSpy + θ CONTROLSpy + γp + δy + εpy 

 
where p represents precincts and y reflects the year. Our initial dependent variable of 

interest is the annual precinct violent crime count, which we obtained by aggregating the 

annual precinct counts for murder, robbery, rape and aggravated assault. The annual 

MPV arrest numbers is the key explanatory variable of interest. Our model also 

conditions on precinct and year fixed effects (γp and δy) to account for unmeasured factors 

that influence crime and are either constant within precincts over our study period, or 

change over time but exert a constant influence over the entire set of city precincts. The 

model also includes a standard set of control variables described in Table 1 and in more 

detail in Harcourt and Ludwig (2006); we do not spend much time discussing their 

estimated impacts given space constraints. We account for arbitrary forms of correlation 

in our models’ error structure by calculating robust standard errors that are clustered at 

the level of the police precinct. 

 The results from this first cut on the data, shown in Table 1, suggest that the 

annual precinct counts of MPV arrests have a significant negative effect on our index of 

violent crime, and that this relationship remains negative using different models. The 

main association is qualitatively similar when we change the set of covariates included in 

the model, focus on lagged rather than contemporaneous values of the MPV arrest 

variable, or estimate a model in logs rather than levels. 
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TABLE 1 

Panel Data Analysis of the Effects of Policing Marijuana MPV on Violent Crime  
Dependent variable = annual precinct violent crime count 

 
Explanatory variables: Model 1 Model 2 Model 3 Model 4 
MPV arrests –0.630 –0.619 –0.540 –0.353 
 [0.124]** [0.128]** [0.115]** [0.110]** 
NYPD Manpower  –0.726 –0.706 –2.219 
  [1.198] [1.138] [1.179] 
Percent Black   34.155 54.610 
   [10.073]** [14.935]** 
Percent Hispanic   42.853 53.524 
   [17.161]* [22.462]* 
Precinct Population    0.010 
    [0.004]* 
Precinct and year fixed effects? Yes Yes Yes Yes 
Control for unemployment, 
drugs, and proportion 19 to 24? No Yes Yes Yes 

Control for other covariates? No No No Yes 
N 900 888 888 888 
R-squared 0.90 0.91 0.92 0.94 

 
Robust standard errors in brackets 
* = statistically significant at 5% cut-off 
** = statistically significant at 1% cut-off 
 

The trouble with this standard panel-data setup is that it ignores mean reversion. Any 

study of crime patterns during the 1990s has to take account of the massive period effects 

on crime during the 1980s and 1990s. The dramatic increase in crime rates observed in 

places like New York City and elsewhere from the mid 1980s through the early-to-mid 

1990s is thought to have been driven largely by the growth in crack cocaine use and 

involvement of firearms in the new street markets for crack.10 Using city-level data, 

Steven Raphael and Jens Ludwig have shown that those cities that experienced the largest 

increases in crime during this period subsequently also experienced the largest crime 

drops.11 This is consistent with Steven Levitt’s (2004) hypothesis that the ebbing of the 

crack epidemic is one of the four important contributors to the American crime drop in 

                                                 
10 See Blumstein 1995:10 (examining some empirical data reflecting changing crime patterns beginning in the mid 1980s and 
concluding that the illegal drug markets’ recruitment of youths resulted in a dramatic growth in youth homicide); Cook and Laub 
2001:22 discussing epidemics of youth violence in different time periods and concluding that the observed youth violence of the late 
1980s was closely tied to the epidemic of crack cocaine). 
11 See Raphael and Ludwig 2003:267 (“To summarize, the large increase in homicide rates occurring during the late 1980s in 
Richmond coupled with the inverse relationship between earlier and later changes in homicide rates observed among other U.S. cities 
casts doubt on the validity of previous claims about the effects of Project Exile.”). 
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the 1990s (the others being increased incarceration and spending on police, and abortion 

legalization in the early 1970s).12 We would expect places that were hit hardest by crack 

to show the largest subsequent declines in crime when crack’s impact begins to dissipate. 

 

A natural concern is that mean reversion may be at work at the police precinct level 

in New York City as well, a possibility that receives support from Figure 1: MPV 

enforcement was most intense within the New York neighborhoods where we would 

expect mean reversion to be most pronounced during the 1990s. Specifically, Panel A 

shows that in 1989 precincts with higher violent crime also have higher MPV arrests. 

That is, the regression line relating violent crime and MPV arrests in 1989 has a positive 

slope. Panel B shows that the most violent precincts in 1989 also experienced the largest 

increase in MPV arrests from 1989 to 2000. Panel C shows that the neighborhoods with 

the highest violent crime in 1989 experienced the largest declines in violent crime from 

1989 to 2000.  

                                                 
12 Steven D. Levitt (2004) Understanding Why Crime Fell in the 1990s: Four Reasons that Explain the Decline and Six that Do Not.” 
Journal of Economic Perspectives. 18(1): 163-190. 
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FIGURE 1 

MPV Arrests and Violent Crime  
in NYC Precincts, 1989–2000 
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Why do precincts with unusually high initial crime rates experience unusually large 

declines in crime thereafter? Mean reversion seems to be an important explanation. Panel 

D shows that, as is true with city-level crime data, those police precincts with the largest 

increases in crime during the crack epidemic have the largest declines thereafter. 

 We can illustrate the basic idea somewhat more formally by estimating a first-

difference model that relates changes across precincts from 1989 to 2000 in precinct 

violent crime to changes over this period in precinct MPV misdemeanor arrests, 

controlling for other changes in explanatory variables. One advantage of this 

specification over the standard panel-data setup as in equation (1) is to allow for a very 
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straightforward way to control for the possibility of mean reversion, by explicitly 

conditioning on the magnitude of each precinct’s increase in violent crime during the 

crack epidemic.13 The basic estimating equation is as follows: 

 
(2) Δ CRIMEp = α + β Δ MPV ARRESTSp + θ Δ CONTROLSp + εp  
 
 The results of this first-difference analysis, reported in Table 2, reveals that the 

change in MPV arrests only has a statistically significant negative effect on changes in 

violent crimes when no other control variables are included in the model. As soon as we 

add a variable that helps capture mean reversion (the increase in crime for each precinct 

through the height of the crack epidemic), the coefficient turns positive and remains 

statistically significant under different model specifications—adding, for example, 

another control for mean reversion, controls for three other explanations for the crime 

drop of the 1990s (drug use patterns, unemployment, and youth demographics), a control 

variable for the NYPD manpower change, and changes in the proportion Hispanic and 

African-American.  

                                                 
13 For general discussion of mean reversion, see Raphael and Ludwig, 2003; Harcourt and Ludwig, 2006.  
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Table 2 

Regressing Violent Crime Changes against MPV Arrest Changes 
Dependent variable = Precinct change in violent crime, 1989–2000 

 
Robust standard errors in brackets. Models 3 through 6 exclude NYPD precinct 49, because we have no 
crime data for that precinct for 1984; Models 4 though 6 exclude NYPD precinct 22 (Central Park) because 
there are no controls for drugs, unemployment and youth population. 
* = statistically significant at 5% cut-off 
** = statistically significant at 1% cut-off 

 

 The positive relationship between the change in MPV arrests and serious crime, 

when prior crime levels is held constant, means that, controlling for mean reversion, an 

increase in MPV arrests over the period translates into an increase in serious crime—not, 

as the broken windows theory would predict, a decrease in serious crime. This is exactly 

the opposite of what we would want in terms of the effect of MPV arrests. It suggests that 

this policing strategy focused on misdemeanor MPV arrests is having exactly the wrong 

effect on serious crime—increasing it, rather than decreasing it.   

 

Explanatory variables: Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Change in MPV Arrests 1989–
2000 –0.864 0.255 0.270 0.181 0.182 0.159 

 [0.159]** [0.061]** [0.059]** [0.061]** [0.061]** [0.058]** 
Violent Crime 1989  –0.767 –0.843 –0.797 –0.778 –0.763 
  [0.027]** [0.040]** [0.034]** [0.038]** [0.036]** 
Change Violent Crime 1984–89   0.306 0.100 0.070 –0.011 
   [0.124]* [0.108] [0.113] [0.111] 
Change Manpower 1989–2000    1.870 2.113 1.791 
    [0.799]* [0.806]* [0.770]* 
Change Percent Black 1989–2000     4.525 6.021 
     [2.448] [2.369]* 
Change Percent Hispanic 1989–
2000     –0.509 –4.244 

     [4.765] [4.681] 
Change in non-MPV 
misdemeanor arrests 1989–2000      0.056 

      [0.019]** 
Control for change in drugs, 
unemployment, and youth 
population 
1989–2000 

No No No Yes Yes Yes 

N 75 75 74 73 73 73 
R-squared 0.29 0.94 0.95 0.97 0.97 0.97 
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 What Table 2 thus reveals is the important role of mean reversion when analyzing 

crime data from the 1990s. In our data, the precincts that received the most intensive 

broken windows policing during the 1990s, as measured by MPV misdemeanor arrests, 

are the ones that experienced the largest increases in crime during the city’s crack 

epidemic of the mid-to-late 1980s. Consistent with findings elsewhere from city-level 

data,14 jurisdictions with the greatest increases in crime during the 1980s tend to 

experience the largest subsequent declines as well. We have called this “Newton’s Law 

of Crime”15 and see it again at work here: what goes up must come down (and what goes 

up the most tends to come down the most). 

 The final column of Table 2 reveals that, in a “horse race” comparison of the 

effect of changes in misdemeanor MPV arrest rates and non-MPV misdemeanor arrest 

rates, both are positively related and statistically significant—though the effect of MPV 

arrest rates on crime is much larger.   

 These conclusions are, overall, consistent with our earlier statistical findings 

concerning the effect of total misdemeanor arrests on serious crime in New York City, 

presented in Broken Windows.16 In that research, we used a similar approach to analyze 

the relationship between changes in total misdemeanor arrests within New York City 

precincts from 1989 to 1998 and changes in the violent crime rate. We found that, if 

anything, increases in misdemeanor arrests were accompanied by increases in violent 

crime. While the positive relationship between changes in misdemeanor arrests and 

changes in violent crime was somewhat sensitive to the model specification, there was no 

evidence from that first-difference model of a negative relationship between changes in 

total misdemeanor arrests and violent crime. We concluded there that the evidence, as 

shown in our original Table 3 in Harcourt and Ludwig 2006, was not consistent with the 

idea that stepped-up zero-tolerance policing reduces crime. We reproduce here Table 3 

from that study. 

                                                 
14  See Raphael and Ludwig 2003: 265 (positing that the reduction in violence in such areas finds its root, 
not in federalized prosecution of eligible gun offenses, but rather in the fact that the violence accompanying 
the introduction of crack cocaine in the 1980s had run its course by the late 1990s). 
15  Harcourt and Ludwig 2006: 276. 
16  Harcourt and Ludwig 2006. 
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TABLE 3 FROM HARCOURT AND LUDWIG 2006 
The Effects of Model Specification and Mean Reversion in the Kelling-Sousa Analysis: 

Regressing Crime Changes against Arrest Changes 

Explanatory 
variables: Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Change 
misdemeanor 

arrests, 1989–98 

–086 
(.074) 

.046 
(.051) 

.114** 
(.022) 

.114** 
(.022) 

.094** 
(.025) 

.004 
(.030) 

Violent crime, 
1989   –.660** 

(.023) 
–.710** 

(.039) 
–.716** 

(.039) 
–.625** 

(.041) 
Change violent 

crimes, 1984–89  -1.762** 
(.183)  .214 

(.133) 
.243* 

(.137) 
–.013 
(.127) 

Change 
manpower, 
1989–98 

    1.412 
(.963) 

3.326** 
(1.065) 

Other 
covariates? N N N N N Y 

N 75 74 74 74 74 74 

R-squared .018 .561 .924 .926 .928 .969 
 
Dependent variable = Precinct change violent crimes, 1989–1998. Other covariates include change from 
1989 to 1998 in poverty, racial and age composition of the population, percent households headed by 
females, public assistance, and vacant housing.  
* = Statistically significant at 10 percent cut-off.  
** = Statistically significant at 5 percent cut-off. 
 
NB: The table as originally published in the University of Chicago Law Review contains errata concerning 
the signs of the coefficients in the first and third rows of the table. The values here are correct.   
 

 

II. Shifting the Burden of Proof Where Such Strong Evidence of Racial Disparities Exists 
 
 The policy recommendations advanced by Golub, Johnson, and Dunlap seem 

appropriate, especially in light of our further findings. We would add just one important 

suggestion that would place the burden of explaining the impact of public policies in 

cases like this—where there is such strong prima facie evidence of disparate racial and 

ethnic impact across a range of criminal justice outcomes—on the agency with the most 

information: courts especially, but legislative bodies as well, should shift the burden of 

proof onto governmental agencies when there is strong facial evidence of discrimination. 

In effect, courts should introduce a Batson-type analysis in reviewing claims of 

intentional discrimination in policing. This could be done either through the judicial 

adoption of a Batson-framework or by legislative action.   
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 As a technical constitutional matter, under the Fourteenth Amendment as 

presently interpreted, any claim of discrimination against the NYPD for the disparity in 

MPV arrests would require a showing of intent on the part of the police officers or 

department. For a legal challenge to withstand scrutiny, a complainant would need to 

establish invidious intent by an actor—either individual police officers or the 

administrators and policy makers at the NYPD. The fact is, the mere existence of a 

disparity does not prove intent. A disproportionate impact on minorities does not, 

standing alone, mean that the NYPD has engaged in invidious racial discrimination. It 

does not exclude the possibility that the NYPD has been pursuing a legitimate end: either 

pursuing all MPV offenders (and they are distributed unevenly) or even using race or 

ethnicity as a proxy for higher risk.  

 It is precisely for this reason that we do not know whether the disparities reflect 

the intentional use of race or ethnicity in policing in New York City. Golub, Johnson, and 

Dunlap are careful not to claim intentional discrimination, precisely because they have no 

data on real offending rates for MPV, nor do they have sufficient data on the background 

characteristics of the arrestees to compare their criminal justice outcomes. Not knowing 

the exact criminal record of each person arrested for an MPV offense, it is impossible to 

hold constant prior criminality in the regressions on criminal justice outcomes.  

 The evidence of disparate impact at several stages of criminal justice outcomes 

(from arrest through incarceration) is strong enough here, however, that instead of 

requiring a complainant to prove intent—which is really an impossible standard to 

meet—the analysis of any Equal Protection challenge should follow the three-step model 

articulated by the Supreme Court in the case of Batson v. Kentucky, which dealt with 

challenges to the racial composition of a prosecutor’s peremptory strikes of potential 

jurors. Adopting a Batson framework would not eliminate the intent requirement; rather, 

it would merely extend the Batson method of inferring intent to the policing context. 

 Under a Batson-type approach, significant statistical discrepancies in the race of 

persons arrested, detained, convicted, and sentenced would satisfy the first prong of the 

analysis and set forth a prima facie case. This would shift the burden to the governmental 

agency to then explain the reason for the disparities. In this case, the police department or 

units would then be required either to offer race-neutral reasons for the disparities—that 
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is, to offer other factors that, when held constant, eliminate the racial correlation with 

arrests—or to present evidence that race is a statistically significant predictor of serious 

crime and that profiling satisfies the limited conditions that make it constitutionally 

acceptable to use race—namely, that it is narrowly tailored to a compelling state 

interest.17 If the state satisfies its burden, then the challenging party should have the 

opportunity to rebut the state’s evidence. 

 Over the spectrum of policing initiatives, the NYPD may have legitimate reasons 

to engage in policing interventions that have disparate impact on racial or ethnic groups 

as compared to their representation in the resident population. It may be the case, for 

instance, that a racial or ethnic group represents a higher proportion of the offending 

population than it does the resident population. Or it may be that other legitimate 

characteristics proxy on race or ethnicity. Disparate impact is not, in itself, prohibited. 

But where there is such strong evidence of disparate impact, the burden should be on the 

agency with the information to explain what is causing the imbalance.  

 What our findings do add to this analysis is that they would preclude the NYPD 

from arguing that profiling Hispanic and African-American residents in the MPV context 

is narrowly tailored to the compelling state interest of combating serious crime. Even 

though this may be an interest that satisfies equal protection analysis in come cases, there 

is no evidence that the broken windows MPV strategy has had the desired effect on 

serious crime.  

 
III. Conclusion 

 
 New York City’s psychedelic experiment with misdemeanor MPV arrests—along 

with all the associated detentions, convictions, and additional incarcerations—represent a 

tremendously expensive policing intervention. As Golub, Johnson, and Dunlap document 

well, the focus on MPV has had a significant disparate impact on African-American and 

Hispanic residents. Our study further shows that there is no good evidence that it 

contributed to combating serious crime in the city. If anything, it has had the reverse 

effect. As a result, the NYPD policy of misdemeanor MPV arrests represents an 
                                                 
17 There is some controversy over whether combating serious crime amounts to a compelling state interest 
that would allow the police to use race explicitly in policing. See Harcourt 2004:1349 n.184. I assume here 
that it would, especially if the crime is serious.  
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extremely poor trade-off of scarce law enforcement resources, imposing significant 

opportunity costs on society in light of the growing body of empirical research that 

highlights policing approaches that do appear to be successful in reducing serious crime.18 

Our findings, building on those of Golub, Johnson, and Dunlap, make clear that these are 

not trade-offs in which we should be engaging.  

 

                                                 
18 See generally Sherman, 2002; Cohen and Ludwig, 2003. 
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Appendix: Data Collection 

 

At our request, Andrew Golub shared with us the time series data on MPV arrests in 

New York City, for which we are deeply grateful. The rest of the data were assembled for 

our earlier study, Broken Windows: New Evidence from New York City and A Five-City 

Social Experiment (2006). We obtained New York City crime and other arrest data for our 

key dependent and explanatory variables directly from the New York City Police 

Department (NYPD). To measure violent crime, we use precinct-level reports of four 

violent offenses (murder, rape, felonious assault, and robbery), though we also have 

individual measures for these and other Part I offenses. We have these data from 1989 

through 2000. We also have precinct-level reports for other types of crime, including 

property offenses.  

There were 75 NYPD precincts in 1989 and there are 76 NYPD precincts today. 

precinct 34 was divided in two in 1994, creating NYPD precinct 33. We have merged 

data from those two precincts (33 and 34) back together to recreate the original 75 

precincts in order to compare them over the full time period. In Table 2, Models 3 

through 6 exclude NYPD precinct 49, because we have no crime data for that precinct for 

1984, thus making it impossible to calculate the increase in crime from 1984 to 1989 for 

purposes of testing mean reversion; Models 4 though 6 exclude NYPD precinct 22 

(Central Park) because there are no controls for drugs, unemployment and youth 

population. 

We decided to use counts rather than rates because the residential populations in the 

precincts to not correspond well with day-time populations. It is worth noting, though, 

that our results are not sensitive to decisions about whether to weight by precinct 

population or not, or to work in per capita crime and arrest rates rather than counts. In 

terms of residential populations, excluding the Central Park precinct, precinct populations 

vary between 16,179 and 242, 948, with a mean of 103,402. These numbers, however, do 

not reflect day-time populations. So, for example, NYPD precinct 14 has the lowest 

residential population—16,179 in 2000—in part because it is the Midtown South precinct 

that covers Time Square and the Garment District, primarily a commercial and 

entertainment oriented precinct. It turns out, though, that the 14th precinct has a lot of 
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MPV arrests. In 2000, it ranked 24th (out of 75 precincts) in terms of MPV arrests, with 

795 arrests. Using a population weight here would clearly distort the result. The same is 

true for the next smallest precinct, NYPD precinct 1 in Manhattan, which covers City 

Hall and the Wall Street area, as well as NYPD precinct 22, the Central Park precinct. 

Residential population numbers here are simply inapposite. Since the residential 

population numbers are not necessarily related to day-time population numbers, it is more 

conservative to use counts rather than rates.  

One challenge for our study is that data on important potential confounding factors 

are not readily available for New York City at the precinct level. To proxy the effect of 

cocaine-related drug consumption, we obtained borough-level data on hospital discharges 

for drug-related causes from the New York State Department of Health, Bureau of 

Biometrics, and extracted reports of hospital discharges for cocaine-related episodes. To 

measure unemployment, we have obtained borough-level data on the annual average 

number of unemployed persons from the New York State Department of Labor. Whether 

data measured at the level of New York’s five boroughs adequately captures variation in 

social and policy conditions across the city’s seventy-six separate precincts is an open 

question. Moreover, the hospital discharge data by its nature cannot distinguish between 

the prevalence of crack use and powdered cocaine consumption. The standard concern in 

the case of poorly measured explanatory variables is attenuation—bias towards zero in 

the coefficients for these covariates. 

In addition, we have incorporated census tract-level measures of racial and ethnic 

composition and age distribution, taken from the 1990 and 2000 decennial censuses. Data for 

the intercensal years are linearly interpolated. Because census tract and police precinct 

boundaries do not perfectly overlap in New York City, we have geocoded both tract and 

precinct boundaries, and then aggregated tracts up to the precinct level by assuming that 

the population of tracts that cross precinct boundaries are distributed across precincts 

proportionately to the tract’s land area.19 We use these census data to calculate measures 

of each precinct’s distribution of youths (19 to 24) and racial and ethnic composition.  

 
                                                 
 19 Suppose for example that census tract 1 lies entirely within precinct A, tract 2 lies entirely within precinct B, but 25 percent 
of the land area of tract 3 is in precinct A while 75 percent of the land area of tract 3 is within precinct B. Let Xi be some population 
characteristic for tract (i), such as percent poor, and let Pi represent the population of tract (i). In this case we calculate percent 
population poor in precinct A as (P1×X1+(0.25)P3×X3)/(P1+(0.25)P3). 
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We have also included, using the same method, other covariates consisting of 

measures of each precinct’s age distribution, poverty rate, female-headed households, 

fraction of adults with different levels of educational attainment, median income, and 

welfare receipt. To measure physical signs of disorder we control for the fraction of 

housing units in the precinct that are vacant. These measures capture structural 

disadvantage (percent of the precinct that is poor, receiving public assistance, or has less 

than a high school degree), demographics (percent of the precinct in their peak offending 

ages, percent of households headed by a female, percent black), and measures of physical 

disorder (percent of housing units that are vacant). 

 Finally, we also incorporated into our dataset a measure of the number of police 

officers assigned to each precinct in each year by the NYPD. One important conceptual 

concern is whether its key explanatory variable of interest—the misdemeanor arrest 

rate—captures the effects of changes in how police resources are deployed or instead 

simply reflects increased police presence. This explanation is of some concern because, 

from 1994 to 1998 the size of the NYPD force increased by about a half.20 

 

 

 
 
 
 
 
 
 
 
 
Readers with comments should address them to: 
 
Professor Bernard Harcourt 
University of Chicago Law School 
1111 East 60th Street 
Chicago, IL  60637 
 harcourt@uchicago.edu 

                                                 
20 See Harcourt 2001:94–95. The police manpower variable is potentially problematic because some arrests within a precinct might be 
made by law enforcement officers who are officially assigned to different areas, although our results are not sensitive to excluding this 
variable. 
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