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The Inaugural Coase Lecture

An Introduction to Regression Analysis
Alan O. Sykes*

Regression analysis is a statistical tool for the investigation of re-
lationships between variables. Usually, the investigator seeks to
ascertain the causal effect of one variable upon another—the effect of
a price increase upon demand, for example, or the effect of changes
in the money supply upon the inflation rate. To explore such issues,
the investigator assembles data on the underlying variables of
interest and employs regression to estimate the quantitative effect of
the causal variables upon the variable that they influence. The
investigator also typically assesses the “statistical significance” of the
estimated relationships, that is, the degree of confidence that the
true relationship is close to the estimated relationship.

Regression techniques have long been central to the field of eco-
nomic statistics (“econometrics”). Increasingly, they have become
important to lawyers and legal policy makers as well. Regression has
been offered as evidence of liability under Title VII of the Civil
Rights Act of , as evidence of racial bias in death penalty litiga-
tion, as evidence of damages in contract actions, as evidence of
violations under the Voting Rights Act, and as evidence of damages
in antitrust litigation, among other things.

In this lecture, I will provide an overview of the most basic tech-
niques of regression analysis—how they work, what they assume,
                                                

‥Professor of Law, University of Chicago, The Law School. I thank Donna
Cote for helpful research assistance.

See, e.g, Bazemore v. Friday,  U.S. ,  ().
See, e.g., McClesky v. Kemp,  U.S.  ().
See, e.g., Cotton Brothers Baking Co. v. Industrial Risk Insurers,  F.d

 (th Cir. ).
See, e.g., Thornburgh v. Gingles,  U.S.  ().
See, e.g., Sprayrite Service Corp. v. Monsanto Co.,  F.d  (th Cir.

).
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and how they may go awry when key assumptions do not hold. To
make the discussion concrete, I will employ a series of illustrations
involving a hypothetical analysis of the factors that determine indi-
vidual earnings in the labor market. The illustrations will have a
legal flavor in the latter part of the lecture, where they will
incorporate the possibility that earnings are impermissibly influenced
by gender in violation of the federal civil rights laws. I wish to
emphasize that this lecture is not a comprehensive treatment of the
statistical issues that arise in Title VII litigation, and that the
discussion of gender discrimination is simply a vehicle for expositing
certain aspects of regression technique. Also, of necessity, there are
many important topics that I omit, including simultaneous equation
models and generalized least squares. The lecture is limited to the
assumptions, mechanics, and common difficulties with single-
equation, ordinary least squares regression.

. What is Regression?
For purposes of illustration, suppose that we wish to identify and

quantify the factors that determine earnings in the labor market. A
moment’s reflection suggests a myriad of factors that are associated
with variations in earnings across individuals—occupation, age, ex-
perience, educational attainment, motivation, and innate ability
come to mind, perhaps along with factors such as race and gender
that can be of particular concern to lawyers. For the time being, let
us restrict attention to a single factor—call it education. Regression
analysis with a single explanatory variable is termed “simple regres-
sion.”
                                                

See  U.S.C. §e- (), as amended.
Readers with a particular interest in the use of regression analysis under Title

VII may wish to consult the following references: Campbell, “Regression Analysis
in Title VII Cases—Minimum Standards, Comparable Worth, and Other Issues
Where Law and Statistics Meet,”  Stan. L. Rev.  (); Connolly, “The Use
of Multiple Rgeression Analysis in Employment Discrimination Cases,” 
Population Res. and Pol. Rev.  (); Finkelstein, “The Judicial Reception of
Multiple Regression Studies in Race and Sex Discrimination Cases,”  Colum. L.
Rev.  (); and Fisher, “Multiple Regression in Legal Proceedings”, 
Colum. L. Rev.  (), at – .
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. Simple Regression
In reality, any effort to quantify the effects of education upon

earnings without careful attention to the other factors that affect
earnings could create serious statistical difficulties (termed “omitted
variables bias”), which I will discuss later. But for now let us assume
away this problem. We also assume, again quite unrealistically, that
“education” can be measured by a single attribute—years of school-
ing. We thus suppress the fact that a given number of years in school
may represent widely varying academic programs.

At the outset of any regression study, one formulates some hy-
pothesis about the relationship between the variables of interest,
here, education and earnings. Common experience suggests that
better educated people tend to make more money. It further suggests
that the causal relation likely runs from education to earnings rather
than the other way around. Thus, the tentative hypothesis is that
higher levels of education cause higher levels of earnings, other
things being equal.

To investigate this hypothesis, imagine that we gather data on
education and earnings for various individuals. Let E denote educa-
tion in years of schooling for each individual, and let I denote that
individual’s earnings in dollars per year. We can plot this informa-
tion for all of the individuals in the sample using a two-dimensional
diagram, conventionally termed a “scatter” diagram. Each point in
the diagram represents an individual in the sample.
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The diagram indeed suggests that higher values of E tend to
yield higher values of I, but the relationship is not perfect—it seems
that knowledge of E does not suffice for an entirely accurate predic-
tion about I. We can then deduce either that the effect of education
upon earnings differs across individuals, or that factors other than
education influence earnings. Regression analysis ordinarily
embraces the latter explanation. Thus, pending discussion below of
omitted variables bias, we now hypothesize that earnings for each
individual are determined by education and by an aggregation of
omitted factors that we term “noise.”

To refine the hypothesis further, it is natural to suppose that
people in the labor force with no education nevertheless make some
                                                

More accurately, what one can infer from the diagram is that if knowledge of
E suffices to predict I perfectly, then the relationship between them is a complex,
nonlinear one. Because we have no reason to suspect that the true relationship
between education and earnings is of that form, we are more likely to conclude
that knowledge of E is not sufficient to predict I perfectly.

The alternative possibility—that the relationship between two variables is
unstable—is termed the problem of “random” or “time varying” coefficients and
raises somewhat different statistical problems. See, e.g., H. Theil, Principles of
Econometrics –  (); G. Chow, Econometrics –  ().
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positive amount of money, and that education increases earnings
above this baseline. We might also suppose that education affects in-
come in a “linear” fashion—that is, each additional year of schooling
adds the same amount to income. This linearity assumption is com-
mon in regression studies but is by no means essential to the appli-
cation of the technique, and can be relaxed where the investigator
has reason to suppose a priori that the relationship in question is
nonlinear.

Then, the hypothesized relationship between education and
earnings may be written

I = α + βE + ε
where

α  = a constant amount (what one earns with zero education);

β = the effect in dollars of an additional year of schooling on in-
come, hypothesized to be positive; and

ε = the “noise” term reflecting other factors that influence earn-
ings.

The variable I is termed the “dependent” or “endogenous” vari-
able; E is termed the “independent,” “explanatory,” or “exogenous”
variable; α  is the “constant term” and β the “coefficient” of the vari-
able E.

Remember what is observable and what is not. The data set
contains observations for I and E. The noise component ε is com-
prised of factors that are unobservable, or at least unobserved. The
parameters α  and β  are also unobservable. The task of regression
analysis is to produce an estimate of these two parameters, based
                                                

When nonlinear relationships are thought to be present, investigators typi-
cally seek to model them in a manner that permits them to be transformed into

linear relationships. For example, the relationship y = cxα  can be transformed into
the linear relationship log y = log c + α•log x. The reason for modeling nonlinear
relationships in this fashion is that the estimation of linear regressions is much
simpler and their statistical properties are better known. Where this approach is
infeasible, however, techniques for the estimation of nonlinear regressions have
been developed. See, e.g., G. Chow, supra note , at – .
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upon the information contained in the data set and, as shall be seen,
upon some assumptions about the characteristics of ε.

To understand how the parameter estimates are generated, note
that if we ignore the noise term ε, the equation above for the rela-
tionship between I and E is the equation for a line—a line with an
“intercept” of α on the vertical axis and a “slope” of β. Returning to
the scatter diagram, the hypothesized relationship thus implies that
somewhere on the diagram may be found a line with the equation I
= α + βE. The task of estimating α and β is equivalent to the task of
estimating where this line is located.

What is the best estimate regarding the location of this line? The
answer depends in part upon what we think about the nature of the
noise term ε. If we believed that ε was usually a large negative num-
ber, for example, we would want to pick a line lying above most or
all of our data points—the logic is that if ε is negative, the true value
of I (which we observe), given by I = α + βE + ε, will be less than the
value of I on the line I = α  + βE. Likewise, if we believed that ε was
systematically positive, a line lying below the majority of data points
would be appropriate. Regression analysis assumes, however, that
the noise term has no such systematic property, but is on average
equal to zero—I will make the assumptions about the noise term
more precise in a moment. The assumption that the noise term is
usually zero suggests an estimate of the line that lies roughly in the
midst of the data, some observations below and some observations
above.

But there are many such lines, and it remains to pick one line in
particular. Regression analysis does so by embracing a criterion that
relates to the estimated noise term or “error” for each observation. To
be precise, define the “estimated error” for each observation as the
vertical distance between the value of I along the estimated line I = α
+ βE (generated by plugging the actual value of E into this equation)
and the true value of I for the same observation. Superimposing a
candidate line on the scatter diagram, the estimated errors for each
observation may be seen as follows:
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With each possible line that might be superimposed upon the data, a
different set of estimated errors will result. Regression analysis then
chooses among all possible lines by selecting the one for which the
sum of the squares of the estimated errors is at a minimum. This is
termed the minimum sum of squared errors (minimum SSE) crite-
rion The intercept of the line chosen by this criterion provides the
estimate of α , and its slope provides the estimate of β.

It is hardly obvious why we should choose our line using the
minimum SSE criterion. We can readily imagine other criteria that
might be utilized (minimizing the sum of errors in absolute value,
for example). One virtue of the SSE criterion is that it is very easy to
employ computationally. When one expresses the sum of squared
errors mathematically and employs calculus techniques to ascertain
the values of α  and β that minimize it, one obtains expressions for α
and β that are easy to evaluate with a computer using only the ob-
                                                

It should be obvious why simply minimizing the sum of errors is not an at-
tractive criterion—large negative errors and large positive errors would cancel out,
so that this sum could be at a minimum even though the line selected fitted the
data very poorly.
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served values of E  and I in the data sample. But computational
convenience is not the only virtue of the minimum SSE criterion—it
also has some attractive statistical properties under plausible as-
sumptions about the noise term. These properties will be discussed
in a moment, after we introduce the concept of multiple regression.

. Multiple Regression
Plainly, earnings are affected by a variety of factors in addition to

years of schooling, factors that were aggregated into the noise term
in the simple regression model above. “Multiple regression” is a
technique that allows additional factors to enter the analysis sepa-
rately so that the effect of each can be estimated. It is valuable for
quantifying the impact of various simultaneous influences upon a
single dependent variable. Further, because of omitted variables bias
with simple regression, multiple regression is often essential even
when the investigator is only interested in the effects of one of the
independent variables.

For purposes of illustration, consider the introduction into the
earnings analysis of a second independent variable called “experi-
ence.” Holding constant the level of education, we would expect
someone who has been working for a longer time to earn more. Let
X denote years of experience in the labor force and, as in the case of
education, we will assume that it has a linear effect upon earnings
that is stable across individuals. The modified model may be written:

I = α + βE + γX + ε

where γ is expected to be positive.
                                                

The derivation is so simple in the case of one explanatory variable that it is
worth including here: Continuing with the example in the text, we imagine that
we have data on education and earnings for a number of individuals, let them be
indexed by j. The actual value of earnings for the jth individual is Ij, and its esti-
mated value for any line with intercept α  and slope β will be α  + βEj. The esti-
mated error is thus Ij –  α  –  βEj. The sum of squared errors is then ∑j(Ij –  α  – 
βEj)2. Minimizing this sum with respect to a requires that its derivative with re-
spect to α be set to zero, or – 2∑j(Ij –  α  –  βEj) = 0. Minimizing with respect to β
likewise requires – 2∑jEi(Ij –  α  –  βEj) = 0. We now have two equations in two
unknowns that can be solved for α and β.
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The task of estimating the parameters α, β, and γ is conceptually
identical to the earlier task of estimating only α and β. The differ-
ence is that we can no longer think of regression as choosing a line
in a two-dimensional diagram—with two explanatory variables we
need three dimensions, and instead of estimating a line we are
estimating a plane. Multiple regression analysis will select a plane so
that the sum of squared errors—the error here being the vertical
distance between the actual value of I and the estimated plane—is at
a minimum. The intercept of that plane with the I-axis (where E
and X  are zero) implies the constant term α , its slope in the
education dimension implies the coefficient β, and its slope in the
experience dimension implies the coefficient γ.

Multiple regression analysis is in fact capable of dealing with an
arbitrarily large number of explanatory variables. Though people lack
the capacity to visualize in more than three dimensions, mathematics
does not. With n explanatory variables, multiple regression analysis
will estimate the equation of a “hyperplane” in n-space such that the
sum of squared errors has been minimized. Its intercept implies the
constant term, and its slope in each dimension implies one of the
regression coefficients. As in the case of simple regression, the SSE
criterion is quite convenient computationally. Formulae for the pa-
rameters α, β, γ . . . can be derived readily and evaluated easily on a
computer, again using only the observed values of the dependent and
independent variables.

The interpretation of the coefficient estimates in a multiple re-
gression warrants brief comment. In the model I = α + βE + γX + ε,
α  captures what an individual earns with no education or experience,
β captures the effect on income of a year of education, and γ captures
the effect on income of a year of experience. To put it slightly differ-
ently, β is an estimate of the effect of a year of education on income,
                                                

The derivation may be found in any standard econometrics text. See, e.g., E.
Hanushek and J. Jackson, Statistical Methods for Social Scientists –  (); J.
Johnston, Econometric Methods –  (d ed. ).
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holding experience constant. Likewise, γ is the estimated effect of a
year of experience on income, holding education constant.

. Essential Assumptions and Statistical Properties of Regression
As noted, the use of the minimum SSE criterion may be de-

fended on two grounds: its computational convenience, and its desir-
able statistical properties. We now consider these properties and the
assumptions that are necessary to ensure them.

Continuing with our illustration, the hypothesis is that earnings
in the “real world” are determined in accordance with the equation
I = α  + βE + γX + ε—true values of α , β, and γ exist, and we desire
to ascertain what they are. Because of the noise term ε, however, we
can only estimate these parameters.

We can think of the noise term ε as a random variable, drawn by
nature from some probability distribution—people obtain an educa-
tion and accumulate work experience, then nature generates a ran-
dom number for each individual, called ε, which increases or de-
creases income accordingly. Once we think of the noise term as a
random variable, it becomes clear that the estimates of α , β, and γ (as
distinguished from their true values) will also be random variables,
because the estimates generated by the SSE criterion will depend
upon the particular value of ε drawn by nature for each individual in
the data set. Likewise, because there exists a probability distribution
from which each ε is drawn, there must also exist a probability dis-
tribution from which each parameter estimate is drawn, the latter
distribution a function of the former distributions. The attractive
statistical properties of regression all concern the relationship be-
tween the probability distribution of the parameter estimates and the
true values of those parameters.

We begin with some definitions. The minimum SSE criterion is
termed an estimator. Alternative criteria for generating parameter es-
timates (such as minimizing the sum of errors in absolute value) are
also estimators.
                                                

An accessible and more extensive discussion of the key assumptions of
regression may be found in Fisher, supra note .
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Each parameter estimate that an estimator produces, as noted,
can be viewed as a random variable drawn from some probability
distribution. If the mean of that probability distribution is equal to
the true value of the parameter that we are trying to estimate, then
the estimator is unbiased. In other words, to return to our illustra-
tion, imagine creating a sequence of data sets each containing the
same individuals with the same values of education and experience,
differing only in that nature draws a different ε for each individual
for each data set. Imagine further that we recompute our parameter
estimates for each data set, thus generating a range of estimates for
each parameter α , β, and γ. If the estimator is unbiased, we would
find that on average we recovered the true value of each parameter.

An estimator is termed consistent if it takes advantage of addi-
tional data to generate more accurate estimates. More precisely, a
consistent estimator yields estimates that converge on the true value
of the underlying parameter as the sample size gets larger and larger.
Thus, the probability distribution of the estimate for any parameter
has lower variance as the sample size increases, and in the limit
(infinite sample size) the estimate will equal the true value.

The variance of an estimator for a given sample size is also of in-
terest. In particular, let us restrict attention to estimators that are un-
biased. Then, lower variance in the probability distribution of the
estimator is clearly desirable—it reduces the probability of an es-
timate that differs greatly from the true value of the underlying pa-
rameter. In comparing different unbiased estimators, the one with
the lowest variance is termed efficient or best.

Under certain assumptions, the minimum SSE criterion has the
characteristics of unbiasedness, consistency, and efficiency—these
assumptions and their consequences follow:
                                                

“Variance” is a mesaure of the dispersion of the probability distribution of a
random variable. Consider two random variables with the same mean (same aver-
age value). If one of them has a distribution with greater variance, then, roughly
speaking, the probability that the variable will take on a value far from the mean is
greater.

Lower variance by itself is not necessarily an attractive property for an es-
timator. For example, we could employ an estimator for β of the form “β = ”
irrespective of the information in the data set. This estimator has zero variance.
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() If the noise term for each observation, ε, is drawn from a
distribution that has a mean of zero, then the sum of squared errors
criterion generates estimates that are unbiased and consistent.

That is, we can imagine that for each observation in the sample,
nature draws a noise term from a different probability distribution.
As long as each of these distributions has a mean of zero (even if the
dsitributions are not the same), the minimum SSE criterion is unbi-
ased and consistent. This assumption is logically sufficient to en-
sure that one other condition holds—namely, that each of the ex-
planatory variables in the model is uncorrelated with the expected
value of the noise term. This will prove important later.

() If the distributions from which the noise terms are drawn for
each observation have the same variance, and the noise terms are
statistically independent of each other (so that if there is a positive
noise term for one observation, for example, there is no reason to ex-
pect a positive or negative noise term for any other observation),
then the sum of squared errors criterion gives us the best or most
efficient estimates available from any linear estimator (defined as an
estimator that computes the parameter estimates as a linear function
of the noise term, which the SSE criterion does).

If assumptions () are violated, the SSE criterion remains unbi-
ased and consistent but it is possible to reduce the variance of the es-
timator by taking account of what we know about the noise term.
For example, if we know that the variance of the distribution from
which the noise term is drawn is bigger for certain observations, then
the size of the noise term for those observations is likely to be larger.
And, because the noise is larger, we will want to give those observa-
tions less weight in our analysis. The statistical procedure for dealing
                                                

See, e.g, P. Kennedy, A Guide to Econometrics –  (d ed. ).
If the expected value of the noise term is always zero irrespective of the val-

ues of the explanatory variables for the observation with which the noise term is
associated, then by definition the noise term cannot be correlated with any ex-
planatory variable.

E.g., id. at ; J. Johnston, supra note , at – .
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with this sort of problem is termed “generalized least squares,” which
is beyond the scope of this lecture.

. An Illustration—Discrimination on the Basis of Gender
To illustrate the ideas to this point, as well as to suggest how re-

gression may have useful applications in a legal proceeding, imagine
a hypothetical firm that has been sued for wage discrimination on
the basis of gender. To investigate these allegations, data have been
gathered for all of the firm’s employees. The questions to be an-
swered are (a) whether discrimination is occurring (liability), and (b)
what its consequences are (damages). We will address them using a
modified version of the earnings model developed in section .

The usefulness of multiple regression here should be intuitively
apparent. Suppose, for example, that according to the data, women
at the firm on average make less than men. Is this fact sufficient to
establish actionable discrimination? The answer is no if the differ-
ence arises because women at this firm are less well-educated, for ex-
ample (and thus by inference less productive), or because they are
less experienced. In short, the legal question is whether women
earn less after all of the factors that the firm may permissibly con-
sider in setting wages have been taken into account.

To generate the data for this illustration, I assume a hypothetical
“real world” in which earnings are determined by equation ():

Earnings = 5000 + 1000 • School + 50 • Aptitude
+ 300 • Experience – 2000 • Gendum + Noise ()

where “School” is years of schooling; “Aptitude” is a score between
 and  on an aptitude test; “Experience” is years of experience
in the work force; and “Gendum” is a variable that equals  for
women and zero for men (more about this variable in a moment).
To produce the artificial data set, I made up fifty observations
(corresponding to fifty fictitious individuals) for each of the explana-
tory variables, half men and half women. In making up the data, I
deliberately tried to introduce some positive correlation between the
                                                

See, e.g., id. at – .
See, e.g., Miller v Kansas Electric Power Cooperative, Inc.,  WL 

(D. Kan.).
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schooling and aptitude variables, for reasons that will become clear
later. I then employed a random number generator to produce a
noise term drawn from a normal distribution, with a standard devia-
tion (the square root of the variance) equal to , and a mean of
zero. This standard deviation was chosen more or less arbitrarily to
introduce a considerable but not overwhelming amount of noise in
proportion to the total variation in earnings. The right-hand-side
variables were then used to generate the “actual value” of earnings for
each of the fifty “individuals.”

The effect of gender on earnings in this hypothetical firm enters
through the variable Gendum. Gendum is a “dummy” variable in
econometric parlance because its numerical value is arbitrary, and it
simply captures some nonnumerical attribute of the sample popula-
tion. By construction here, men and women both earn the same re-
turns to education, experience, and aptitude, but holding these fac-
tors constant the earnings of women are $, lower. In effect, the
constant term (baseline earnings) is lower for women, but otherwise
women are treated equally. In reality, of course, gender discrimina-
tion could arise in other ways (such as lower returns to education and
experience for women, for example), and I assume that it takes this
form only for purposes of illustration.

Note that the random number generator that I employed here
generates noise terms with an expected value of zero, each drawn
from a distribution with the same variance. Further, the noise terms
for the various observations are statistically independent (the realized
value of the noise term for each observation has no influence on the
noise term drawn for any other observation). Hence, the noise terms
satisfy the assumptions necessary to ensure that the minimum SSE
criterion yields unbiased, consistent, and efficient estimates. The ex-
pected value of the estimate for each parameter is equal to the true
value, therefore, and no other linear estimator will do a better job at
recovering the true parameters than the minimum SSE criterion. It
is nevertheless interesting to see just how well regression analysis
performs. I used a standard computer package to estimate the con-
stant term and the coefficients of the four independent variables
from the “observed” values of Earnings, School, Aptitude,
Experience, and Gendum for each of the fifty hypothetical individu-
als. The results are reproduced in table , under the column labeled
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“Estimated Value.” (We will discuss the last three columns and the
R2 statistic in the next section.)

Table  (noise term with standard deviation of ,)
Variable “True

value”
Estimated

value
Standard

error
t-

statistic
Prob

(-tail)
Constant . . . . .
School . . . . .
Aptitude . . . . .
Experience . . . . .
Gendum – . – . . – . .

R2 = .

Note that all of the estimated parameters have the right sign.
Just by chance, it turns out that the regression overestimates the
returns to schooling and underestimates the other parameters. The
estimated coefficient for Aptitude is off by a great deal in proportion
to its true value, and in a later section I will offer an hypothesis as to
what the problem is. The other parameter estimates, though obvi-
ously different from the true value of the underlying parameter, are
much closer to the mark. With particular reference to the coefficient
of Gendum, the regression results correctly suggest the presence of
gender discrimination, though its magnitude is underestimated by
about  percent (remember that an overestimate of the same magni-
tude was just as likely ex ante, that is, before the actual values for the
noise terms were generated).

The source of the error in the coefficient estimates, of course, is
the presence of noise. If the noise term were equal to zero for every
observation, the true values of the underlying parameters could be
recovered in this illustration with perfect accuracy from the data for
only five hypothetical individuals—it would be a simple matter of
solving five equations in five unknowns. And, if noise is the source
of error in the parameter estimates, intuition suggests that the
magnitude of the noise will affect the accuracy of the regression
estimates, with more noise leading to less accuracy on average. We
will make this intuition precise in the next section, but before
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proceeding it is perhaps useful to repeat the parameter estimation
experiment for a hypothetical firm in which the data contain less
noise. To do so, I took the “data” for the independent variables used
in the experiment above and again generated values for earnings for
the fifty hypothetical individuals using equation (), changing only
the noise terms. This time, the noise terms were drawn by the
random number generator from a normal distribution with standard
deviation of , rather than , (a significant reduction in the
amount of noise). Reestimating the regression parameters from this
modified data set produced the results in table :

Table  (noise term with standard deviation of ,)
Variable “True

value”
Estimated

value
Standard

error
t-statis-

tic
Prob

(-tail)
Constant . . . . .
School . . . . .
Aptitude . . . . .
Experience . . . . .
Gendum – . – . . – . .

R2 = .

Not surprisingly, the estimated parameters here are considerably
closer to their true values. It was not certain that they would be, be-
cause after all their expected values are equal to their true values re-
gardless of the amount of noise (the estimator is unbiased). But on
average we would expect greater accuracy, and greater accuracy in-
deed emerges here. Put more formally, the probability distributions
of the parameter estimates have greater variance, the greater the vari-
ance of the noise term. The variance of the noise term thus affects
the degree of confidence that we have in the accuracy of regression
estimates.

In real applications, of course, the noise term is unobservable, as
is the distribution from which it is drawn. The variance of the noise
term is thus unknown. It can, however, be estimated using the
difference between the predicted values of the dependent variable for
each observation and the actual value (the “estimated errors” defined
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earlier). This estimate in turn allows the investigator to assess the
explanatory power of the regression analysis and the “statistical sig-
nificance” of its parameter estimates.

. Statistical Inference and Goodness of fit
Recall that the parameter estimates are themselves random vari-

ables, dependent upon the random variables ε. Thus, each estimate
can be thought of as a draw from some underlying probability distri-
bution, the nature of that distribution as yet unspecified. With a
further assumption, however, we can compute the probability distri-
bution of the estimates, and use it to test hypotheses about them.

. Statistical Inference
Most readers are familiar, at least in passing, with a probability

distribution called the “normal.” Its shape is that of a “bell curve,”
indicating among other things that if a sample is drawn from the
distribution, the most likely values for the observations in the sample
are those close to the mean and least likely values are those farthest
from the mean. If we assume that the noise terms ε are all drawn from
the same normal distribution, it is possible to show that the parameter
estimates have a normal distribution as well.

The variance of this normal distribution, however, depends upon
the variance of the distribution from which the noise terms are
drawn. This variance is unknown in practice and can only be esti-
mated using the estimated errors from the regression to obtain an
estimate of the variance of the noise term. The estimated variance of
the noise term in turn can be used to construct an estimate of the
                                                

See, e.g., E. Hanushek and J. Jackson, supra note , at – ; J. Johnston,
supra note , at – . The supposition that the noise terms are normally dis-
tributed is often intuitively plausible and may be loosely justified by appeal to
“central limit theorems,” which hold that the average of a large number of random
variables tends toward a normal distribution even if the individual random vari-
ables that enter into the average are not normally distributed. See, e.g., R. Hogg
and A. Craig, Introduction to Mathematical Statistics –  (th ed. ); W.
Feller, An Introduction to Probability Theory and Its Applications, vol. , –  (d
ed. ). Thus, if we think of the noise term as the sum of a large number of in-
dependent, small disturbances, theory affords considerable basis for the supposi-
tion that its distribution is approximately normal.
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variance of the normal distribution for each coefficient. The square
root of this estimate is called the “standard error” of the
coefficient—call this measure s.

It is also possible to show that if the parameter estimate, call it
π, is normally distributed with a mean of µ, then (π –  µ)/s has a
“Student’s t” distribution. The t-distribution looks very much like
the normal, only it has “fatter” tails and its mean is zero. Using this
result, suppose we hypothesize that the true value of a parameter in
our regression model is µ. Call this the “null hypothesis.” Because
the minimum SSE criterion is an unbiased estimator, we can deduce
that our parameter estimate is drawn from a normal distribution
with a mean of µ if the null hypothesis is true. If we then subtract µ
from our actual parameter estimate and divide by its standard error,
we obtain a number called the t-statistic, which is drawn from a t-
distribution if the null hypothesis is true. This statistic can be
positive or negative as the parameter estimate from which it is
derived is greater or less than the hypothesized true value of the
parameter. Recalling that the t-distribution is much like a normal
with mean of zero, we know that large values of the t-statistic (in
absolute value) will be drawn considerably less frequently than small
values of the t-statistic. And, from the construction of the t-statistic,
large values for that statistic arise (in absolute value), other things
being equal, when the parameter estimate on which it is based differs
from its true (hypothesized) value by a great deal.

This insight is turned on its head for hypothesis testing. We
have just argued that a large t-statistic (in absolute value) will arise
fairly infrequently if the null hypothesis is correct. Hence, when a
large t-statistic does arise, it will be tempting to conclude that the
null hypothesis is false. The essence of hypothesis testing with a
regression coefficient, then, is to formulate a null hypothesis as to its
true value, and then to decide whether to accept or reject it
according to whether the t-statistic associated with that null
hypothesis is large enough that the plausibility of the null hypothesis
is sufficiently in doubt.

                                                
See sources cited note  supra.
I limit the discussion here to hypothesis testing regarding the value of a

particular parameter. In fact, other sorts of hypotheses may readily be tested, such
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One can be somewhat more precise. We might resolve that the
null hypothesis is implausible if the t-statistic associated with our
regression estimate lies so far out in one tail of its t-distribution that
such a value, or one even larger in absolute value, would arise less
than, say,  percent of the time if the null hypothesis is correct. Put
differently, we will reject the null hypothesis if the t-statistic falls
either in the uppermost tail of the t-distribution, containing . per-
cent of the draws representing the largest positive values, or in the
lowermost tail, containing . percent of the draws representing the
largest negative values. This is called a “two-tailed test.”

Alternatively, we might have a strong prior belief about the true
value of a parameter that would lead us to accept the null hypothesis
even if the t-statistic lies far out in one of the tails of the distribution.
Consider the coefficient of the gender dummy in table  as an illus-
tration. Suppose the null hypothesis is that the true value of this co-
efficient is zero. Under what circumstances would we reject it? We
might find it implausible that the true value of the coefficient would
be positive, reflecting discrimination against men. Then, even if the
estimated coefficient for the gender dummy is positive with a large
positive t-statistic, we would still accept the null hypothesis that its
true value is zero. Only a negative coefficient estimate with a large
negative t-statistic would lead us to conclude that the null hypothesis
was false. Where we reject the null hypothesis only if a t-statistic
that is large in absolute value has a particular sign, we are employing
a “one-tailed test.”

To operationalize either a one- or two-tailed test, it is necessary
to compute the exact probability of a t-statistic as large or larger in
absolute value as the one associated with the parameter estimate at
issue. In turn, it is necessary to know exactly how “spread out” is the
t-distribution from which the estimate has been drawn. A further
parameter that we need to pin down the shape of the t-distribution
in this respect is called the “degrees of freedom,” defined as the
number of observations in the sample less the number of parameters
to be estimated. In the illustrations of tables  and , we have fifty
observations in the sample, and we are estimating  parameters, so
                                                                                                         
as the hypothesis that all parameters in the model are zero, the hypothesis that
some subset of the parameters are zero, and so on.
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the t-distribution for any of the parameter estimates has  degrees
of freedom. The fewer the degrees of freedom, the more “spread
out” is the t-distribution and thus the greater is the probability of
drawing large t-statistics. The intuition is that the larger the sample,
the more collapsed is the distribution of any parameter estimate
(recall the concept of consistency above). By contrast, the more
parameters we seek to estimate from a sample of given size, the more
information we are trying to extract from the data and the less
confident we can be in the estimate of each parameter—hence, the
associated t-distribution is more “spread out.”

Knowing the degrees of freedom for the t-distribution allows an
investigator to compute the probability of drawing the t-statistic in
question, or one larger in absolute value, assuming the truth of the
null hypothesis. Using the appropriate one- or two-tailed test (the
former necessary only when the t-statistic is of the right sign), the
investigator then rejects the null hypothesis if this probability is
sufficiently small.

But what do we mean by “sufficiently small”? The answer is by
no means obvious, and it depends upon the circumstances. It has be-
come convention in social scientific research to test one particular
null hypothesis—namely, the hypothesis that the true value of a co-
efficient is zero. Under this hypothesis, µ in our notation above is
equal to zero, and hence the t-statistic is simply π/s, the coefficient
estimate divided by its standard error. It is also convention to em-
brace a “significance level” of ., ., or .—that is, to inquire
whether the t-statistic that the investigator has obtained, or one even
larger in absolute value, would arise more than  percent,  percent,
or  percent of the time when the null hypothesis is correct. Where
the answer to this question is no, the null hypothesis is rejected and
the coefficient in question is said to be “statistically significant.” For
example, if the parameter estimate that was obtained is far enough
from zero that an estimate of that magnitude, or one even further
from zero, would arise less than  percent of the time, then the co-
efficient is said to be significant at the . level.

The question whether the conventional social scientific signifi-
cance tests are appropriate when regression analysis is used for legal
                                                

See sources cited note  supra.
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applications, particularly in litigation, is a difficult one that I will de-
fer to the concluding section of this lecture. I will simply assume for
now that we are interested in the general problem of testing some
null hypothesis, and that we will reject it if the parameter estimate
obtained lies far enough out in one of the tails of the distribution
from which the estimate has been drawn. We leave open the ques-
tion of what constitutes “far enough” and simply seek to compute
the probability under a one- or two-tailed test of obtaining an
estimate as far from the mean of the distribution as that generated
by the regression if the null hypothesis is true.

Most computerized regression packages report not only the pa-
rameter estimate itself (π in our notation), but also the standard
error of each parameter estimate (s in our notation). This value,
coupled with the hypothesized true parameter value (µ in our
notation), can then be employed to generate the appropriate t-
statistic for any null hypothesis. Many regression packages also
report a number called the “t-statistic,” which is invariably based
upon the conventional social scientific null hypothesis that the true
parameter value is zero. finally, some packages report the probability
that the t-statistic at issue could have been generated from a t-
distribution with the appropriate degrees of freedom under a one- or
two-tailed test.

Returning to tables  and , all of this information is reported for
each of the five parameter estimates—the standard error, the value of
the t-statistic for the null hypothesis that the true parameter value is
zero, and the probability of getting a t-statistic that large or larger in
absolute value under a two-tailed test with  degrees of freedom. To
interpret this information, consider the estimated coefficient for the
                                                

If the regression package does not report these probabilities, they can readily
be found elsewhere. It has become common practice to include in statistics and
econometrics books tables of probabilities for t-distributions with varying degrees
of freedom. Knowing the degrees of freedom associated with a t-statistic, there-
fore, one can consult such a table to ascertain the probability of obtaining a t-
statistic as far from zero or farther as the one generated by the regression (the con-
cept “far from zero” again defined by either a one- or two-tailed test). As a point
of reference, when the degrees of freedom are large (say,  or more), then the .
significance level for a two-tailed test requires a t-statistic approximately equal to
..
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gender dummy in table . The estimated coefficient of – . has
standard error of . and thus a t-statistic of – ./. =
– .. The associated probability under a two-tailed test is reported
as .. This means that if the true value of the coefficient for the
gender dummy were zero, a coefficient greater than or equal to
. in absolute value would nevertheless arise  percent of the
time given the degrees of freedom of the t-distribution from which
the coefficient estimate is drawn. A rejection of the null hypothesis
on the basis of a parameter estimate equal to . or greater in ab-
solute value, therefore, will be erroneous three times out of ten when
the null hypothesis is true. By conventional social science standards,
therefore, the significance level here is too low to reject the null hy-
pothesis, and the coefficient of the gender dummy is not statistically
significant. It is noteworthy that in this instance (in contrast to any
real world application), we know the true parameter value, namely
– .. Hence, if we employ a conventional two-tailed significance
test, we are led erroneously to reject the hypothesis that gender dis-
crimination is present.

As noted, we may regard the two-tailed test as inappropriate for
the coefficient of the gender dummy because we find the possibility
of discrimination against men to be implausible. It is a simple matter
to construct an alternative one-tailed test: Table  indicates that a
coefficient estimate of . or greater in absolute value will occur
 percent of the time if the true value of the coefficient is zero. Put
differently, an estimate of the gender dummy coefficient greater than
or equal to . will arise  percent of the time, and an estimate
less than or equal to – . will arise  percent of the time. It fol-
lows that if we are only interested in the lower tail of the t-distribu-
tion, rejection of the null hypothesis (when it is true) will be erro-
neous only  percent of the time if we require a parameter estimate
of – . or smaller. The one-tailed significance level is thus .,
still below the conventional thresholds for statistical significance.

Using such significance levels, therefore, we again are led to accept
the null hypothesis, in this case erroneously.
                                                

The result in this illustration is general—for any t-statistic, the probability
of rejecting the null hypothesis erroneously under a one-tailed test will be exactly
half that probability under a two-tailed test.
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I offer this illustration not to suggest that there is anything
wrong with conventional significance tests, but simply to indicate
how one reduces the chance of erroneously rejecting the null hy-
pothesis (call this a “Type I” error) only by increasing the chance of
erroneously accepting it (call this a “Type II” error). The conven-
tional significance tests implicitly give great weight to the impor-
tance of avoiding Type I errors, and less weight to the avoidance of
Type II errors, by requiring a high degree of confidence in the falsity
of the null hypothesis before rejecting it. This seems perfectly ap-
propriate for most scientific applications, in which the researcher is
justifiably asked to bear a considerable burden of proof before the
scientific community will accept that the data establish an asserted
causal relation. Whether the proponent of regression evidence in a
legal proceeding should bear that same burden of proof is a more
subtle issue.

. Goodness of fit
Another common statistic associated with regression analysis is

the R2. This has a simple definition—it is equal to one minus the
ratio of the sum of squared estimated errors (the deviation of the ac-
tual value of the dependent variable from the regression line) to the
sum of squared deviations about the mean of the dependent variable.
Intuitively, the sum of squared deviations about its mean is a mea-
sure of the total variation of the dependent variable. The sum of
squared deviations about the regression line is a measure of the ex-
tent to which the regression fails to explain the dependent variable (a
measure of the noise). Hence, the R2 statistic is a measure of the ex-
tent to which the total variation of the dependent variable is ex-
plained by the regression. It is not difficult to show that the R2

statistic necessarily takes on a value between zero and one.

A high value of R2, suggesting that the regression model
explains the variation in the dependent variable well, is obviously
important if one wishes to use the model for predictive or forecasting
purposes. It is considerably less important if one is simply interested
in particular parameter estimates (as, for example, if one is searching
for evidence of discrimination, as in our illustration, and thus
                                                

See, e.g., E. Hanushek and J. Jackson, supra note , at – .
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focused on the coefficient of the gender dummy). To be sure, a large
unexplained variation in the dependent variable will increase the
standard error of the coefficients in the model (which are a function
of the estimated variance of the noise term), and hence regressions
with low values of R2 will often (but by no means always) yield
parameter estimates with small t-statistics for any null hypothesis.
Because this consequence of a low R2 will be reflected in the t-
statistics, however, it does not afford any reason to be concerned
about a low R2 per se.

As a quick illustration, turn back to tables  and . Recall that the
noise terms for the data set from which the estimates in table  were
generated were drawn from a distribution with a standard deviation
of ,, while for table  the noise terms were drawn from a distri-
bution with a standard deviation of ,. The unexplained variation
in the earnings variable is likely to be greater in the first data set,
therefore, and indeed the R2 statistics confirm that it is (. for
table  and . for table ). Likewise, because the estimated variance
of the noise term is greater for the estimates in table , we expect the
coefficient estimates to have larger standard errors and smaller t-
statistics. This expectation is also borne out on inspection of the two
tables. Variables with coefficients that are statistically significant by
conventional tests in table , therefore, such as the gender dummy,
are not statistically significant in table .

In these illustrations, the value of R2 simply reflects the amount
of noise in the data, and a low R2 is not inconsistent with the mini-
mum SSE criterion serving as an unbiased, consistent, and efficient
estimator because we know that the noise terms were all
independent draws from the same distribution with a zero mean. In
practice, however, a low value of R2 may indicate that important and
systematic factors have been omitted from the regression model.
This possibility raises again the concern about omitted variables bias.

. Two Common Statistical Problems in Regression Analysis
Much of the typical econometrics course is devoted to what hap-

pens when the assumptions that are necessary to make the minimum
SSE criterion unbiased, consistent, and efficient do not hold. I can-
not begin to provide a full sense of these issues in such a brief lecture
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and will simply illustrate two of the many complications that may
arise, chosen because they are both common and quite important.

. Omitted Variables
As noted, the omission from a regression of some variables that

affect the dependent variable may cause an “omitted variables bias.”
The problem arises because any omitted variable becomes part of the
noise term, and the result may be a violation of the assumption
necessary for the minimum SSE criterion to be an unbiased estima-
tor.

Recall that assumption—that each noise term is drawn from a
distribution with a mean of zero. We noted that this assumption
logically implies the absence of correlation between the explanatory
variables included in the regression and the expected value of the
noise term (because whatever the value of any explanatory variable,
the expected value of the noise term is always zero). Thus, suppose
we start with a properly specified model in which the noise term for
every observation has an expected value of zero. Now, omit one of
the independent variables. If the effect of this variable upon the de-
pendent variable is not zero for each observation, the new noise
terms now come from distributions with nonzero means. One con-
sequence is that the estimate of the constant term will be biased
(part of the estimated value for the constant term is actually the
mean effect of the omitted variable). Further, unless the omitted
variable is uncorrelated with the included ones, the coefficients of
the included ones will be biased because they now reflect not only an
estimate of the effect of the variable with which they are associated,
but also partly the effects of the omitted variable.

To illustrate the omitted variables problem, I took the data on
which the estimates reported in table  are based, and reran the re-
gression after omitting the schooling variable. The results are shown
in table :

                                                
See J. Johnston, supra note , at – ; E. Hanushek and J. Jackson, supra

note , at – . The bias is a function of two things—the true coefficients of the
excluded variables, and the correlation within the data set between the included
and the excluded variables.
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Table . Omitted variable illustration
Variable “True

value”
Estimated

value
Standard

error
t-statis-

tic
Prob

(-tail)
Constant . . . . .
School . omitted
Aptitude . . . . .
Experience . . . . .
Gendum – . – . . – . .

R2 = .

You will note that the omission of the schooling variable lowers
the R2 of the regression, which is not surprising given the original
importance of the variable. It also alters the coefficient estimates.
The estimate for the constant term rises considerably, because the
mean effect of schooling on income is positive. It is not surprising
that the constant term is thus estimated to be greater than its true
value. An even more significant effect of the omission of schooling is
on the coefficient estimate for the aptitude variable, which increases
dramatically from below its true value to well above its true value and
becomes highly significant. The reason is that the schooling variable
is highly correlated (positively) with aptitude in the data set—the
correlation is .—and because schooling has a positive effect on
earnings. Hence, with the schooling variable omitted, the aptitude
coefficient is erroneously capturing some of the (positive) returns to
education as well as the returns to “aptitude.” The consequence is
that the minimum SSE criterion yields an upward biased estimate of
the coefficient for aptitude, and in this case the actual estimate is in-
deed above the true value of that coefficient.

The effect on the other coefficients is more modest, though non-
trivial. Notice, for example, that the coefficient of gendum increases
(in absolute value) significantly. This is because schooling happens
to be positively correlated with being male in my fictitious data
set—without controlling for schooling, the apparent effect of gender
is exaggerated because females are somewhat less well educated on
average.
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The omitted variables problem is troublesome to investigators
not simply because it requires them to collect data on more variables
to avoid it, but because the omitted variables are often unobservable.
Real world studies of gender discrimination are perhaps a case in
point. One can readily imagine that earnings depend on such factors
as innate ability and motivation, both of which may be unobservable
to an investigator. Omitted variables bias may then become some-
thing that the investigator cannot avoid, and an understanding of its
consequences then becomes doubly important. For an investigator
concerned primarily with the coefficient of the gender dummy, it
might be argued, the omitted variables bias caused by the exclusion
of innate ability and motivation should be modest because the corre-
lation in the sample between gender and those omitted variables
might plausibly be assumed to be small. Where the problem appears
likely to be serious, by contrast, the utility of conventional regression
as an investigative tool diminishes considerably.

I note in passing that the problem of including extraneous or ir-
relevant variables is less serious. Their expected coefficient is zero
and the estimates of the other coefficients are not biased, although
the efficiency of the minimum SSE criterion is lessened.

I also note in passing a problem that is closely related to the
omitted variables problem, termed “errors in variables.” In many re-
gression studies, it is inevitable that some explanatory variables will
be measured with error. Such errors become part of the noise term.
Let us assume that in the absence of measurement error, the noise
terms obey the assumption needed for unbiasedness and consis-
tency—they are all drawn from a distribution with zero mean and
are thus uncorrelated with the explanatory variables. With measure-
ment error, however, this assumption will no longer hold.
                                                

Econometricians have developed some more sophisticated regression tech-
niques to deal with the problem of unobservable variables, but these are not always
satisfactory because of certain restrictive assumptions than an investigator must
make in using them. See, e.g., Griliches, “Errors in Variables and Other Unob-
servables,”  Econometrica  (). An accessible discussion of the omitted
variables problem and related issues may be found in P. Kennedy, supra note , at
– .

Id.
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Imagine, for concreteness, that earnings depend on education,
experience, and so on, as hypothesized earlier, and on innate ability
as suggested above. Instead of supposing that innate ability is an
omitted variable, however, suppose that the aptitude test score in-
cluded in the regression is a “proxy” for innate ability. That is, we re-
gard it as an imperfect measure of ability, correlated with it but not
perfectly. When the test score underestimates ability, the noise term
rises, and when the aptitude score overestimates ability the noise
term falls. The result is a negative correlation between the noise term
and the aptitude/ability variable. Put differently, if the noise term
without measurement error is drawn from a distribution with zero
mean, then the noise term including the measurement error is drawn
from a distribution with a mean equal to the magnitude of that
error. The consequence once again is bias in the estimated
coefficients of the model.

. Multicollinearity
The multicollinearity problem does not result in biased coeffi-

cient estimates, but does increase the standard error of the estimates
and thus reduces the degree of confidence that one can place in
them. The difficulty arises when two independent variables are
closely correlated, creating a situation in which their effects are diffi-
cult to separate.

The following illustration will convey the essential intuition:
Suppose that two law school faculty members (call them Baird and
Picker) regularly address alumni luncheons, held partly for the pur-
pose of stimulating alumni contributions. Assume that each time
one gives a luncheon speech, the other does too, and that the only
available datum on alumni contributions is aggregate monthly
                                                

One standard technique for addressing this problem is termed “instrumental
variables,” which replaces the tainted variable with another variable that is thought
to be closely associated with it but also thought uncorrelated with the disturbance
term. For a variety of reasons, however, the instrumental variables technique is not
satisfactory in many cases, and the errors in variables problem is consequently one
of the most serious difficulties in the use of regression techniques. A discussion of
the instrumental variables technique and other possible responses to the errors in
variables problem may be found in P. Kennedy, supra note , at – ; J.
Johnston, supra note , at – .
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giving. We somehow know that each time both give a speech in a
month, alumni contributions rise by $,. When they each give
two speeches in a month, contributions rise by $,, and so on.

Thus, by hypothesis, we know the joint effect of a speech by both
Baird and Picker ($,), but nothing in the data permit us to as-
certain their individual effects. Perhaps each speech increases contri-
butions by $,, but it might be that one speaker induces an extra
$, in giving and the other none, or that one speaker induces an
extra $, in giving and the other reduces giving by $,. In
econometric parlance, the data on speeches given by Baird and
Picker are perfectly collinear—the correlation between the number
of speeches per month by Baird and the number per month by
Picker is .. An attempt to estimate the effect of the number of
speeches given by each upon contributions would fail and result in
an error message from the computer (for reasons that we need not
detail, it would find itself trying to divide by zero).

The term “multicollinearity” usually refers to a problem in the
data short of the perfect collinearity in our illustration, but where
changes in two variables are nevertheless highly correlated to the
point that it is difficult to separate their effects. Because multi-
collinearity does not go to any property of the noise term, the mini-
mum SSE criterion can still be unbiased, consistent, and efficient.
But the difficulty in separating the effects of the two variables intro-
duces greater uncertainty into the estimator, manifest as an increase
in the standard errors of the coefficients and a reduction in their t-
statistics.

One illustration of the effects of multicollinearity may already
have been provided. In our discussion of table , we noted that the
coefficient estimate for the aptitude variable was far below its true
value. As it turns out, aptitude and schooling are highly correlated in
the data set, and this affords a plausible conjecture as to why the co-
efficient for the schooling variable is too high and that for aptitude
insignificantly small (some of the effects of aptitude in the sample
are captured by the schooling coefficient).

To give another illustration, which incidentally allows us to in-
troduce another use of “dummy” variables, suppose that gender dis-
crimination at our hypothetical firm affects the earnings of women in
two ways—through an effect on the baseline earnings of women as
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before, and through an effect on the returns to education for women.
In particular, recall that in equation () both sexes earned $, per
year of schooling. Suppose now that males earn $,, but females
earn only $. This effect can be captured mathematically by an
“interaction term” incorporating the gender dummy, so that earnings
are now determined in accordance with equation ():

Earnings = 5000 + 1000 • School + 50 • Aptitude
+ 300 • Experience –  2000 • Gendum
–  200 • Gendum • School ()

Using the same hypothetical data for the explanatory variables as
before, I produced new values of earnings using equation () and
(just for variety’s sake) noise terms drawn from a distribution with
standard deviation of ,. I then estimated a regression from the
new data set, including the variable Gendum • School as an
additional explanatory variable. The results are in table , where the
variable “Interact” is simply Gendum • School.

Table . Multicollinearity illustration
Variable “True

value”
Estimated

value
Standard

error
t-statis-

tic
Prob

(-tail)
Constant . . . . .
School . . . . .
Aptitude . . . . .
Experience . . . . .
Gendum – . – . . – . .
Interact – . . . . .

R2 = .

Observe that, in contrast to table , the coefficient for the gender
dummy is now higher than the real value by more than a factor of
two. The coefficient for the interaction term, by contrast, has the
wrong sign and is close to zero. The other parameter estimates are
not too far off the mark.

The poor results for the coefficients of Gendum and Interact are
almost certainly a result of a severe multicollinearity problem. Note
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that whenever Gendum = 0, Interact = 0 as well. Gendum is positive
only when Interact is positive. We would expect a high correlation
between them, and indeed the correlation coefficient is .. Under
these circumstances, it is no surprise that the regression cannot sepa-
rate the effects of the two variables with any accuracy. The estimated
coefficient for Interact is insignificant by any plausible test, and the
coefficient for Gendum also has a large standard error that produces
a rather poor t-statistic despite the high absolute value of the coeffi-
cient estimate.

Notwithstanding the considerable uncertainty introduced into
the coefficient estimates, however, it is plausible that the multi-
collinearity problem here is not disastrous for an investigator inter-
ested in identifying the extent of gender discrimination. The reason
is that the estimate of the joint effects of the Gendum and Interact
may not be too far afield—one is inflated and one is understated,
with the errors to a great extent canceling each other—and as a legal
matter an estimate of the joint effect may be all that is needed. The
caveat is that multicollinearity reduces the t-statistics for both vari-
ables, and might thereby lead the investigator to reject the
hypothesis that discrimination is present at all. To deal with the
effects of multicollinearity here, therefore, the investigator might
simply wish to discount the low t-statistics, or else to omit one of the
two variables and recognize that the coefficient estimate for the
included variable will be biased and will include the effect of the
omitted variable.

In many instances, however, the investigator will not be satisfied
with an estimate of the joint effect of two variables, but needs to sep-
arate them. Here, multicollinearity can become highly problematic.
There is no simple, acceptable solution for all cases, though various
options warrant consideration, all beyond the scope of this lecture.

. A final Note on the Law: Regression Analysis and the Burden of Proof
A key issues that one must confront whenever a regression study

is introduced into litigation is the question of how much weight to
                                                

It is important to recollect that this approach raises the problem of omitted
variables bias for the other variables as well.

See P. Kennedy, supra note , at – .
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give it. I hope that the illustrations in this lecture afford some basis
for optimism that such studies can be helpful, while also suggesting
considerable basis for caution in their use.

I return now to an issue deferred earlier in the discussion of hy-
pothesis testing—the relationship between the statistical significance
test and the burden of proof. Suppose, for example, that to establish
liability for wage discrimination on the basis of gender under Title
VII, a plaintiff need simply show by a preponderance of the evidence
that women employed by the defendant suffer some measure of dis-
crimination. With reference to our first illustration, we might say
that the required showing on liability is that, by a preponderance of
the evidence, the coefficient of the gender dummy is negative.

Unfortunately, there is no simple relationship between this bur-
den of proof and the statistical significance test. At one extreme, if
we imagine that the parameter estimate in the regression study is the
only information we have about the presence or absence of discrimi-
nation, one might argue that liability is established by a preponder-
ance of the evidence if the estimated coefficient for the gender
dummy is negative regardless of its statistical significance or standard
error. The rationale would be that the negative estimate, however
subject to uncertainty, is unbiased and is the best evidence we have.

But this is much too simplistic. Very rarely is the regression es-
timate the only information available, and when the standard errors
are high the estimate may be among the least reliable information
available. Further, regression analysis is subject to considerable ma-
nipulation. It is not obvious precisely which variables should be in-
cluded in a model, or what proxies to use for included variables that
cannot be measured precisely. There is considerable room for exper-
imentation, and this experimentation can become “data mining,”
whereby an investigator tries numerous regression specifications
until the desired result appears. An advocate quite naturally may
have a tendency to present only those estimates that support the
client’s position. Hence, if the best result that an advocate can
present contains high standard errors and low statistical significance,
it is often plausible to suppose that numerous even less impressive
                                                

See, e.g., Texas Department of Community Affairs v. Burdine,  U.S. 
().
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results remain hidden, and conceivably shielded from discovery by
the work product doctrine.

For these reasons, those who use regression analysis in litigation
tend to report results that satisfy the conventional significance
tests—often the -percent significance level—and to suppose that
less significant results are not terribly interesting. Before most ex-
perts would feel comfortable asserting that gender discrimination has
been established by a study such as that in our illustration, therefore,
they likely would require that the coefficient estimate for the gender
dummy be negative and statistically significant. Even then, they
would anticipate a vigorous cross-examination based on a number of
matters, many suggested by the discussion above.

Still more difficult issues arise when an exact parameter estimate
is needed for some purpose, such as for computing damages. The
fact that the parameter is “statistically significant” simply means that
by conventional tests, one can reject the hypothesis that its true value
is zero. But there are surely many other hypotheses about the pa-
rameter value that cannot be rejected, and indeed the likelihood that
regression will produce a perfectly accurate estimate of any
parameter is negligible. About the only guidance that can be given
from a statistical standpoint is the obvious—parameter estimates
with proportionally low standard errors are less likely to be wide of
the mark than others.

Ultimately, therefore, statistics itself does not say how much
weight a regression study ought be given, or whether it is reasonable
to use a particular parameter estimate for some legal purpose or
other. These assessments are inevitably entrusted to triers of fact,
whose judgments on the matter if well informed are likely as good as
those of anyone else.

                                                
I will not digress on the rules of discovery here. In practice, the raw data

may be discoverable, for example, while the expert’s undisclosed analysis of the
data may not be.

See the discussion in Fisher, “Statisticians, Econometricians and Adversary
Proceedings,”  J. Am. Stat. Assn.  ().
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