1998

A Simple Explanation for Why Campaign Expenditures are Increasing: The Government is Getting Bigger

John Lott

Follow this and additional works at: https://chicagounbound.uchicago.edu/law_and_economics

Part of the Law Commons

Recommended Citation

This Working Paper is brought to you for free and open access by the Coase-Sandor Institute for Law and Economics at Chicago Unbound. It has been accepted for inclusion in Coase-Sandor Working Paper Series in Law and Economics by an authorized administrator of Chicago Unbound. For more information, please contact unbound@law.uchicago.edu.
A Simple Explanation for Why Campaign Expenditures are Increasing: The Government is Getting Bigger

John R. Lott, Jr.

THE LAW SCHOOL
THE UNIVERSITY OF CHICAGO
A Simple Explanation for Why Campaign Expenditures are Increasing: the Government is Getting Bigger

John R. Lott, Jr.*

This paper shows that most of the large recent increases in campaign spending for Federal and state offices can be explained by higher government spending. This result holds for both Federal and state legislative campaigns and gubernatorial races and across many different specifications. Evidence is also examined on whether it is the composition and not just the level of expenditures which determines campaign expenditures and whether higher government expenditures similarly results in more candidates competing for office. The data provide some indication that legislative term limits reduce campaign expenditures and increase the number of candidates running for office. Finally, by focusing on the symptoms and not the root causes of ever higher campaign expenditures, this paper argues that the current public policy debate risks changing the form that payments are made rather than actually restricting the level of competition.

I. Introduction

Federal campaign spending for all candidates running for the House and the Senate has risen by 180 percent in real terms from 1976 to 1994, and per capita real expenditures increased by 136

* I would like to thank Dennis Carlton, Gertrud Fremling, Larry Kenny, Tom Lyon, Sam Peltzman, Thomas Stratmann, and seminar participants at the University of Chicago, University of Kentucky, the 1995 Western Economic Association Meetings, the 1996 American Economic Association Meetings, and the 1996 Public Choice meetings for their helpful discussions. Bret Connor, David Mustard, and Ilona Stanley provided excellent research assistance. I would also like to express my thanks to the Center for the Study of the Economy and the State for the funding that I received as the John M. Olin Visiting Assistant Professor and the funding that I now receive from the Law School as the John M. Olin Visiting Law and Economics Fellow.
percent.1 In fact, even before the Federal government started formally collecting data on campaign contributions, the claims that too much money was being spent and that those giving the donations were too influential justified the 1974 Federal law restricting donations.2 For Presidential campaigns accepting Federal funding, total dollar spending during the general election is thus now rigorously limited. More recently, other initiatives have proposed to limit campaign spending for congressmen and senators with detailed rules determining how much senators in different states can spend.3 At the state level, Kentucky placed a $1.8 million spending limit on its gubernatorial candidates in 1995 (Cross, 1995, p. 4B), and similar legislation was recently introduced in virtually all state legislatures.4 In 1996, Californians are voting on an initiative to limit campaign expenditures.5 However, the legislative proposals universally concentrate on the symptoms (restricting the increases) rather than on the underlying causes. Meanwhile, the debate by economists largely concerns whether limits benefit incumbents or challengers. The economics and political science literature fails to discuss why spending has grown so quickly.

The real increase in campaign expenditures is not an issue limited only to the Federal government. As Table 1 indicates, candidates for state legislatures increased campaign expenditures about half as quickly as those for Federal office. Comparing the ten states for which campaign expenditure data are available for at least 4

1 Press reports are filled with concerns over these ever growing expenditures. As Morris (February 6, 1996) writes: “Modern politics is expensive—extremely expensive—and getting more so with each passing campaign.”

2 A long debate exists over whether campaign contributions go to politicians who value the same things as the donors or whether the contributions alter how politicians vote (e.g., Stratmann, 1991 and 1992 and Bronars and Lott, 1993).

3 During the 103rd congress the main proposal on this score was the Congressional Campaign Spending Limit and Campaign Finance Reform Act (S 3, H R 3). The House bill would have provided public funding to candidates who accept spending limits, and the Senate version would tax those who breach limits.

4 The support for these limits is quite bi-partisan. For example, in Ohio, Republicans Gov. George Voinovich and Secretary of State Bob Taft both wanted strict limits on total campaign expenditures (Miller, 1995, p. 1B).

5 The limits will be set at $300,000 for Assembly races and $500,000 for the state Senate candidates (Grad, 1995, p. 1)
state election cycles with both state Senate and House elections, per capita campaign expenditures rose faster than inflation by 22 percent in Missouri to as much as 185 percent faster in Oregon. State gubernatorial campaign expenditures also rose quickly. For the 36 states that held elections in 1982, 1986, and 1990, real per capita total expenditures rose 58 percent faster than inflation over the period, and for the states that staged gubernatorial elections every four years from 1980 to 1992 experienced a 61.8 percent real increase.

Possibly, expenditures are rising because the costs of advertising are changing or because the returns to advertising greatly increased over the last couple of decades. Indeed, the change in campaign expenditures and product advertising have changed in similar ways during the last couple of decades. While real per capita product advertising in the United States grew 16 percent slower than real per capita Federal legislative campaign expenditures from 1976 to 1994, it grew 26 percent faster than the average for State legislative campaign expenditures.7

Surprisingly little systematic work has been done to explain the overall secular increase in product advertising, though portions of this question have been addressed. For example, Ehrlich and Fisher (1982) show that advertising intensity may be a substitute for salesmen and thus increases with the wage of the salesmen, while increases in the buyers' wages raises search costs and thus increases their demand for product information. Pashigian and Bowen (1994) point to the greater reliance on brand names as female opportunity costs have risen. However, similar explanations in the context of campaign expenditures point to changes in the composition of expenditures (away from using labor intensive methods of campaigning), without necessarily predicting total expenditures.8

Technological innovations could play a role. Sullivan (1995) points out that new product introductions have increased because the

6 Of course, this first point depends upon one’s beliefs about the demand elasticity for advertising. To my knowledge, there are no studies that measure the elasticity of demand for advertising.

7 This is obtained from various issues of Leading National Advertisers, Inc.’s BAR Multimedia Reports.

8 Again, this depends upon the demand elasticity of advertising expenditures.
advent of scanner technology reduces the costs of both managing new line extensions and doing the marketing research required for introducing a new product. Thus, product advertising expenditures may have increased simply because the number of new products has increased (Sullivan, 1995). However, this also provides at least one reason to expect that product advertising expenditures should have risen by more than campaign expenditures: while the number of new product announcements has been increasing over time, the turnover rate of politicians has been declining over most of the period for Federal legislative offices (Reed and Schansberg, 1992).

While the work explaining how product advertising has varied over time is scarce, comparable work on political markets is even scarcer. The only related papers that explain the trends in total campaign expenditures discuss the incentives of individual politicians. Snyder (1990 and 1992) deals with contributions and Lott (1987a and 1989) focuses on expenditures by asking how past investments in reputation influence future contributions and expenditures and how these actions will vary over an individual politician’s life cycle. While Snyder finds that contributions decline with age and Lott asks whether increased expenditures by the incumbent or the challenger changes his opponent’s expenditures and both look at the effect of tenure, no implications are drawn for how total campaign expenditures have been changing over time. With the exception of Lott’s (1987a, pp. 238-9) use of per capita district income, it is not even clear that these results imply systematic changes in aggregate campaign expenditures.

As just noted in connection with the marketing literature, it could be that technological or campaign innovations are driving higher expenditures. Yet, what evidence exists for at least one possible change indicates that it is a “myth” that “this explosion in spending is a direct result of the modern campaign’s ever-increasing dependence on television advertising” (Morris, 1996, p. 1). He provides some very rough evidence for the Federal House and Senate

9 Another large literature asks who gives to candidates and how politicians’ behavior is affected by these contributions (see e.g., Stratmann), though only one paper in this area deals with time series data (Bronars and Lott). Another large literature deals with the marginal support produced from campaign expenditures by both incumbents and challengers (see, e.g. Kau, et. al., 1982).
Campaign Expenditures
campaigns from 1990 to 1994 that shows no relationship between
the percentage of campaign expenditures spent on radio and
television (both development and airing costs) and total campaign
expenditures.10

Ironically, unless the underlying motivations for the larger
campaign contributions are addressed, the current approach of
simply limiting total expenditures might actually increase the total
societal resources devoted to campaigning. Limits on expenditures
might simply change the form that expenditures take. For example,
where individuals would previously write a check themselves for
$10,000 to a candidate, they now must spend the time to round up
others to contribute. When dollar contributions are limited,
individuals may donate more of their own time (stuffing envelopes or
ringing door bells or lobbying neighbors) when they would have
preferred to make a donation to hire others to do the campaigning.
While restrictions raise the cost of contributions and lower the total
amount of campaigning since these restrictions will force donations
to take less desirable forms, the total portion of society's wealth
devoted to campaigning can either increase or decrease depending
upon the elasticity of demand.11 If demand is inelastic, total
resources devoted towards campaigning increases.

The following section provides an explanation for increasing
campaign expenditures based upon the growth of government: the
more transfers the government has to offer, the more resources
people will spend to obtain them. Section III examines some time
series evidence linking federal legislative campaign expenditures and
increased federal government expenditures. The main empirical
work starts with Section IV which provides detailed cross-sectional
time-series data linking both state legislative and gubernatorial

10 Morris reports that House incumbents running for reelection from 1990 to
1994 spent between 20 and 25 percent of election year expenditures on all aspects
of radio and television advertising.

11 The problem is similar to price controls. Controls lower the official price paid
for products and reduce the quantity supplied, but these effects in turn leads to
rent seeking by those attempting to have these attractively priced goods allocated
to them. For the marginal person the total price including queuing and other costs
will exceed what the market price had been. In the simple case where all
competitors have the same opportunity costs the total resources spent on acquiring
the good will be greater under price controls.
campaign expenditures to the growth of state governments. To more rigorously control for other factors affecting the returns to campaign expenditures, Section V investigates: changes in the intensity of the competition due to events like retirements, other measures of the returns to winning, and any technological changes in running for office. Evidence is also examined on whether higher government expenditures increase the returns to higher campaign expenditures or whether the regressions might be capturing the reverse relationship. Section VI decomposes the growth in state campaign expenditures by the type of state government expenditure. Finally, Sections VII and VIII ask whether higher government expenditures increase the returns to more politicians running for office or the length of time politicians remain in office.

II. The “Growing Government” Explanation for Increasing Campaign Expenditures

This paper offers a simple “growing government” explanation for why campaign expenditures have increased so dramatically. A contributor's demand for a politician winning office is a product of: 1) the marginal increase in the probability of the candidate winning and 2) the benefit or reward produced by having the politician win elected office. This benefit may include pecuniary as well as psychological rewards. If one's candidate wins, that can mean either increased expected transfers to those one values or to oneself. In either case, the benefits are related to the size and scope of the government. As government has more favors to grant, the resources spent in trying to obtain those favors should increase.

12 Presumably, if the level of government expenditures is related to the prestige associated with the office, even a candidate may be willing to spend more of his own money in order to win office.

13 While this paper asks how the size of government affects competition in the political market, Besley and Case (1995b) and Crain and Oakley (1995) provide interesting evidence that the size of government is affected by constitutional restrictions on the political market such as term limits for governors and whether an initiative process is present. Besley and Case (1995a) also ask how the taxes in neighboring state governments affect the outcome of a state's gubernatorial elections. Peltzman (1992) examines the relationship between the size of government and its effect on elections. Others have looked the relationship between the organization of Congress and spending by looking at the effect of
In general, rent seeking takes many forms (Tullock, 1967). Specifically with regard to government transfers, Browning (1974) and Tullock (1974) have also described the time investments made by politicians and bureaucrats in competing for resources. In addition, constituents and other interest groups obviously spend time assisting in campaigns to affect political wealth transfers. If these costs were as easily measurable as campaign expenditures, one would expect to find that they also vary with the size of government. While Laband and Sophocleus (1992, pp. 969-70) mention PACs and broadly discuss how rent seeking can involve campaign contributions, even they do not attempt to explain campaign expenditures when measuring the United States’ rent seeking costs.

There is also the question that government transfers take many forms. If the hypothesis presented here is correct, increased abilities to transfer wealth in any form (e.g., regulations or expropriation of property) should lead to increased campaign expenditures. Government expenditures are just one proxy for this increased ability to create transfers. For example, even though the earlier mentioned evidence that Federal campaign expenditures have increased faster than state campaign expenditures is consistent with the Federal government’s expenditures growing 59 percent faster than state expenditures from 1976 to 1992, it is also consistent with the congressional tenure on whether politicians vote for increased spending (Reed and Schansberg, 1994 and Lott and Bronars, 1993). Dick and Lott (1993) also argue that legislative term limits will reduce the size of government.

Organizations like Common Cause are quick to point to gifts, junkets, meals, and drinks bought by lobbyists. Abrams and Settle (1976) look at very rough time series expenditure data for Presidential elections from 1872 to 1972 to estimate the cost savings from their proposal to randomly select 1 million Americans “every four years to vote for everyone else” (p. 47). Our discussion here brings the savings that they claim into question since the “bigger government” hypothesis would imply that the competition for each of those 1 million voters would simply be more intense.

Regulations are broadly meant to include not only economics regulations involving firms but also other types of transfers that government can create such as whether abortion will be legalized or people can own guns for self-defense. Likewise, other issues like trade policy are also included.

Table 2 indicates that during the period from 1976 to 1992 Federal legislative campaign expenditures rose by 137.5 and that the increases in either state gubernatorial or legislative expenditures were less than half as large.
growth in the Federal government's relative importance on regulatory issues. The evidence presented here examines expenditures simply because it is easily measured. No alternative measure exists across states that allows us to compare the changing level of transfers created through regulations.

To determine whether the "growing government" explanation is correct, other explanations must be controlled for and will be discussed in more depth in Section V. Yet, altruism is certainly one alternative explanation for campaign donations. Presumably, higher campaign contributions include the possibility that giving to campaigns is like giving to charitable organizations in that it increases with income (e.g., Roberts, 1984). Changing opportunity costs as measured by income might affect the mix of campaign produced information and thus might affect total campaign expenditures in an analogous way to our discussion of Ehrlich and Fisher's (1982) and Pashigian and Bowen's (1994) work. In addition, enough campaigns may have become closer contests over time and thus caused expenditures to rise for a reason that is completely unrelated to the level of government wealth transfers. For example, retirements generally increase the number of candidates who compete for a seat and are associated with increased campaign expenditures.

III. Some Suggestive Time-Series Evidence for Federal Legislative Offices

Federal data for legislative offices are limited by the fact that data on campaign donations and expenditures were not systematically reported until the 1975-1976 election cycle. Using the data up until the most recent election thus covers only 10 election cycles, and thus can only be viewed as suggestive.18 The only major change in campaign finance laws occurred in 1974, prior to when the

18 While running the regressions on data for individual races would produce many more observations, no new real information would be produced with respect to the size of the Federal or state government since those vary at either the Federal or state levels.
Campaign expenditures were collected. The "Growing Government" hypothesis states that Federal election expenditures should be positively related to government expenditures.

We regress the natural log of the total real Senate plus House campaign expenditures in both the primary and general elections on the natural log of the election year's real Federal Budget expenditures. The regression attempts to measure political competition using the number of candidates running in the primary and general elections during that campaign cycle, changes in the desire to make charitable contributions or opportunity costs of voters by using per capita income, the scale effects of campaigning by controlling for the nation's population, and any secular changes that are likely to have been occurring by using a time trend variable. The sample means and standard deviations are reported in Table 2, and all values are in real 1992 dollars. This specification yields the following results:

Rerunning regressions (1) and (3) using the Cochrane-Orcutt method produces virtually the same estimates.

19 In an important sense the campaign expenditure limits have become consistently more binding over time since campaign donation limits were set in nominal terms.

20 The data on total real Senate and House campaign expenditures in both the primary and general elections along with the data on the number of candidates running in the primary and general elections during a campaign cycle were obtained from press releases published by the Federal Election Commission. Data on population, gross national product, and the Federal budget expenditures were obtained from the Statistical Abstract of the United States.

21 Rerunning specifications 1 and 3 using the Cochrane-Orcutt method raises the t-statistic of Ln (Federal Gov Budget Expenditures) to 2.647 and of Federal Gov Budget Exp./Population to 5.121.

In addition, recognizing that using population as an explanatory variable on the right hand side of equations (3) and (4) can produce artificial collinearity due to measurement error, specifications (3) and (4) were also reestimated after all the variables were multiplied by the population, though the results were essentially unchanged. Rerunning these regressions by replacing all these variables with their differences and dropping the time trend variable produces similar economic, though less statistically significant, results. For the specifications analogous to equations (1) and (3), the coefficients for the differences in the natural log and per capita government spending are significant at only the .15 level for a two-tailed t-test.
\[
\ln (\text{Federal Legislative Campaign Expenditures}) = 0.1669 \ln (\text{Federal Gov Budget Expenditures})
\]
\[
(2.307)
\]
\[
-8.97 \times 10^{-6} \text{ (GDP/Population)} + 2.72 \times 10^{-5} \text{ Number of Candidates} - 3.64 \times 10^{-8} \text{ Population}
\]
\[
(0.799) \quad (0.83) \quad (2.215)
\]
\[
+0.1061 \text{ Time Trend} + 32.304
\]
\[
(2.768) \quad (8.554)
\]
\[
\text{Adj-} R^2 = 0.9770 \quad \text{Observations} = 10 \quad (1)
\]
\[
\text{DW-statistic} = 2.7189
\]
\[
\ln (\text{Federal Legislative Campaign Expenditures}) = 0.6071 \ln (\text{Federal Gov Budget Expenditures})
\]
\[
(4.54)
\]
\[
+0.0002648 \text{ Number of Candidates} - 14.68
\]
\[
(3.39) \quad (1.97)
\]
\[
\text{Adj-} R^2 = 0.8660 \quad \text{Observations} = 10 \quad (2)
\]
\[
\text{DW-statistic} = 1.878
\]

Absolute t-statistics are shown in parentheses. We also reestimated these specifications by replacing the logarithmic values for campaign and budget expenditures with their per capita values.
(Federal Legislative Campaign Exp./Population) = 0.001198 (Federal Gov Budget Exp./Population) (2.291)

+ 0.00007 (GDP/Population) + 0.0003 Number of Candidates + 3.08 E-7 Population (0.884) (1.576) (2.013)

- 0.77668 Time Trend - 71.584 Adj-R2 = 0.8611 Observations = 10 (3)

(Federal Legislative Campaign Exp./Population) = 5.379 E-4 (Federal Gov Budget Exp./Population) (3.50)

+ 4.752 E-4 Number of Candidates - 1.510 Adj-R2 = 0.8344 Observations = 10 (4)

(3.58) (2.24) DW-statistic = 1.9949

DW-statistic = 1.5857
The only variables that are consistently significant at the .10 level for a two-tailed t-test are the ones that measure Federal budget expenditures. However, not only are the budget variables consistently significant, they also indicate some economic importance. A one standard deviation change in the Federal budget produces more than a one standard deviation change in campaign expenditures in specification 3, while a one standard deviation change in the Federal budget explains about half of a one standard deviation change in campaign expenditures in specification 4. The impact of government expenditures on campaign expenditures can be seen in another way. For example, while real per capita Federal budget expenditures increased from $4,219 to $5,320 between 1976 and 1994 and real per capita Federal legislative campaign expenditures rose from $1.12 to $2.64, specification (3) implies that $1.32 (or 87 percent) of the $1.52 increase in campaign expenditures was explained by rising Federal government expenditures.1

As with any purely time-series data, there is always the concern that Federal campaign expenditures are merely correlated with some other variable which Federal government expenditures is tracking. As a simple test, I replaced Federal campaign expenditures with total national product advertising in the United States and reestimated the preceding four regressions.2 The specifications that corresponded to regressions (1) and (3) produced the opposite relationship to that which was found for campaign expenditures. Using the Cochrane-Orcutt method, the respective t-statistics were -2.620 and -6.215.3

1 In an important sense the campaign expenditure limits have become consistently more binding over time since campaign donation limits were set in nominal terms. I attempted to test whether this constraint reduced campaign expenditures by including a separate variable for the price index. While the coefficient was negative, it was insignificant with t-statistics having values less than 1.

2 This is obtained from various issues of Leading National Advertisers, Inc.'s BAR Multimedia Reports.

3 The regressions were as follows:

\[
\begin{align*}
\text{Ln (National Advertising Expenditures)} &= -.3847 \text{Ln (Federal Gov Budget Expenditures)} + .00061 \\
&\quad \text{(GDP/Population)} \quad (2.620) \\
&\quad - .000038 \text{Number of Candidates} + 1.58 \times 10^{-9} \text{Population} + 0.0520 \text{Time Trend} + 22.76 \\
&\quad (0.583) \quad (0.050) \quad (0.742) \quad (3.327)
\end{align*}
\]
The specifications that corresponded to specifications (2) and (4) produced budget expenditure variables that were positive but insignificant. Finally, regressing either the natural log of federal legislative campaign expenditures or per capita federal legislative campaign expenditures on national advertising expenditures, federal budget expenditures, and per capita income still produces a positive and significant relationship between campaign and budget expenditures.

IV. Cross-Sectional Time-Series Evidence on State Campaign Expenditures

One clear drawback with using the Federal campaign expenditures is the very small number of time series observations. In addition, with so many variables increasing over time, government expenditures may be merely proxying for some other left out variables. Obviously, cross-sectional data are not readily available for the Federal legislature because all Federal legislators face the same set of transfers to draw on. In contrast, studying the states allows us to pool together the time-series and cross-sectional evidence on how their legislative campaign expenditures vary with the size of their state governments.

Letters to all state Secretary of States and state election commissions and follow-up telephone calls produced time series cross-sectional data on total campaign expenditures during each election cycle for sixteen states: Alabama (1990), Alaska (1976 to

\begin{align*}
\text{Adj-R}^2 &= 0.9939 \quad F\text{-statistic} = 259.74 \quad \text{Observations} = 10 \quad (1') \\
\text{(National Advertising Expenditures/Pop.)} &= \\
&= -0.000096 \text{ (Federal Gov Budget Expenditures/Pop)} + 9.06 \times 10^{-5} \text{ (GDP/Population)} \\
&\quad (6.215) \quad (4.765) \\
&= -0.000013 \text{ Number of Candidates} - 1.25 \times 10^{-8} \text{ Population} + 0.0406 \text{ Time Trend} + 3.0118 \\
&\quad (2.176) \quad (3.298) \quad (4.232) \quad (3.488) \\
\text{Adj-R}^2 &= 0.9958 \quad F\text{-statistic} = 384.09 \quad \text{Observations} = 10 \quad (3') \\
\end{align*}

Eliminating the number of candidates variable form regressions 1' and 3' still leaves Federal budget expenditures coefficient significantly negative with t-statistics of -2.96 and -3.77.
Chicago Working Paper in Law and Economics

1992), California (1976 to 1992), Connecticut (1988 to 1992), Florida (1978 to 1992), Idaho (1976 to 1992), Kansas (1982 to 1990), Massachusetts (1986 to 1992), Michigan (1978 to 1992), Missouri (1978 to 1990), North Carolina (1990 to 1992), New Mexico (1988 to 1990), Ohio (1990 to 1992), Oklahoma (1988 to 1992), Oregon (1972 to 1992), and Washington (1978 to 1992, with the exception of 1986) (see the appendix for a detailed discussion of these data sources). Ninety-one observations on total primary and general election campaign expenditures were obtained for the state houses and eighty-one for the state senates, though the number of observations is reduced to sixty-nine and sixty-one respectively when other variables are included to measure such things as the total number of candidates, how competitive individual’s general and primary races were, and whether an incumbent was running for re-election.

However, before proceeding with a more detailed analysis of the state level data which controls for other factors explaining the changing levels of campaign expenditures, two scatter plots may help illustrate the strong relationship between campaign spending and state government spending. Figures 1 and 2 show these scatter plots of all 91 State House observations and all 81 State Senate observations linking campaign expenditures with government expenditures. The Pearson correlation coefficients for the State House observations is 0.912 and for the State Senate 0.885 (both are statistically significant at the .01 level). Similar high and significant correlations are obtained whether one compares per capita measures of campaign and government expenditures (for the State Houses correlation is 0.9454 and for the State Senates 0.9427) or compares the natural log of these per capita values (for State Houses it is 0.8077 and the State Senates 0.8015). Thus, there appears to be a very strong relationship between government expenditures and campaign contributions.

The simplest specifications regressed total real legislative campaign expenditures for those years where both Senate and House took place on real state expenditures in 1992 dollars, the number of people living in a state, and total number of major party candidates running for office.
The Relationship Between Total Campaign Spending for State Houses and State Government Expenditures

Figure 1
The Relationship Between Total Campaign Expenditures for State Senates and State Government Expenditures

Figure 2

Table 2 shows the sample means and standard deviations for these variables. Again, we included both the natural logarithmic values of the expenditure variables and also those expenditure variables on a per capita basis. The results for these simple specifications are:
\[
\ln (\text{Total State Legislative Campaign Expenditures}) = 0.64648 \ln (\text{State Gov Budget Expenditures}) \\
+0.000068 (\text{Per Capita Income}) - 2.8 \times 10^{-8} \text{ Population} +0.0014 \text{ Total Candidates} - 0.75 \tag{5}
\]

\[
(5.60) \\
(4.88) \\
(2.10) \\
(2.65) \\
(0.31)
\]

\[\text{Adj-R}^2 = 0.806196 \quad \text{Observations} = 61\]

\[
\text{Total State Legislative Campaign Expenditures/Population} = 0.00093 \text{ State Gov Budget Exp/Population} \tag{14.57}
\]

\[
+0.000197 (\text{Per Capita Income}) - 3.6 \times 10^{-8} \text{ Population} +0.0012 \text{ Total Candidates} - 3.71 \tag{6}
\]

\[
(4.63) \\
(2.70) \\
(1.78) \\
(5.42)
\]

\[\text{Adj-R}^2 = 0.90289 \quad \text{Observations} = 61\]

The results again are not only statistically but also economically significant. While specification 5 implies that a one standard deviation change in state budget expenditures can explain 62 percent of a standard deviation change in a state's total legislative campaign expenditures, specification 6 implies that the percentage explained is 80 percent.

For gubernatorial elections the data on campaign expenditures is much more complete. Time-series cross-sectional campaign expenditure data for all 50 states is available for gubernatorial elections from the Book of the States. The dates for which the data are available are summarized in Table 1. Figure 3 shows these scatter plots of all 178 gubernatorial observations linking campaign expenditures with government expenditures.
Generally, the relationship is not as strong as with the legislative data as the Pearson correlation coefficients is 0.7720, though it is still statistically significant at the .01 level. Similar lower, though still statistically significant, correlations are obtained whether one compares per capita measures of campaign and government expenditures (0.6986) or compares the natural log of these per capita values (0.6504).

Running the same specifications using the gubernatorial data that we used for the legislative data we obtained:

\[
\ln(\text{Total State Gubernatorial Campaign Expenditures}) = 0.7481 \ln(\text{State Gov Budget Expenditures}) \\
(7.524)
\]

\[
1.42 \times 10^{-6} \text{(Per Capita Income)} - 7.66 \times 10^{-9} \text{Population} + 0.1933 \text{Total Candidates} - 2.332 \\
(0.088) \quad (0.413) \quad (6.757) \quad (1.114)
\]

\[\text{Adj-R}^2 = 0.6162 \quad \text{Observations} = 168\]

\[
\text{Total State Gubernatorial Campaign Exp./Population} = 0.00166 \text{State Gov Budget Exp./Population} \\
(13.656)
\]

\[
-8.17 \times 10^{-5} \text{(Per Capita Income)} - 6.40 \times 10^{-8} \text{Population} + 0.3850 \text{Total Candidates} - 1.3658 \\
(1.758) \quad (2.466) \quad (5.334) \quad (1.672)
\]

\[\text{Adj-R}^2 = 0.6828 \quad \text{Observations} = 168\]
These preliminary regressions again imply a strong relationship between campaign and state government expenditures. Not only are the coefficients for budget expenditures statistically significant, but these two specifications imply that a one-standard-deviation increase in per capita state government expenditures can explain between 67 and 73 percent of a one-standard-deviation increase in gubernatorial expenditures.

Figure 3
campaign expenditures. By contrast the only other variable that is consistently significant in both specifications is the total number of candidates, and a one standard deviation change in the number of candidates explains only between 26 and 31 percent of a one standard deviation change in campaign expenditures. The biggest difference between state legislative and gubernatorial specifications is that while income was significant and positive in explaining legislative campaign expenditures it is either insignificant or negative and significant in explaining gubernatorial campaign expenditures.\footnote{Again, recognizing that using population as an explanatory variable on the right hand side of equations (6) and (8) can produce artificial collinearity due to measurement error, both specifications were then reestimated after all the variables were multiplied by the population, though the results were essentially unchanged.}

The most surprising result from this raw data is that total state legislative and gubernatorial and Federal campaign expenditures represent such a small fraction of government expenditures. Though as Tullock (1989 and 1995) and Laband and Sophocleus (1992, pp. 967-8) have pointed out, this rent-seeking puzzle exists more generally. With respect to our data, total state legislative and gubernatorial campaign contributions represent about a tenth of one percent of state government expenditures, and the percentage for the federal government is less than half of them. Possibly, as Laband and Sophocleus (1988 and 1992) argue, competition to obtain wealth transfers is merely taking other forms.

V. Controlling for Other Factors that Determine the Level of Legislative Campaign Expenditures

A. Measuring Changes in Competition, the Returns to Winning Office, and the Technology of Running for Office

Obviously, other factors influence the campaign expenditures, though only the state level data affords us enough observations to control for these effects. The three most obvious variables to control for are the intensity of the competition, other measures of the return to winning a race, and any technological changes in running for office. With respect to the intensity of competition, there may be year-to-year variations in competition resulting from such things as
retirements and not simply from changes in the level of government transfers. We have tried to measure competition in two ways. The first method is similar to creating a variable like that used in the analysis of Federal campaign expenditures which controls for the number of candidates running for office. This measure is however probably less useful for cross-sectional state legislative races than for federal legislative offices since, unlike the Federal system during this period, the number of seats being competed for vary not only across states but also over time within some states. To address this concern, the odd number specifications in Tables 3 through 8 not only control for the number of seats being decided in an election, but they also control for the number of candidates per seat. This effect is allowed to vary by party so that the variables take the form of the number of Republican candidates (primary plus general election) divided by the number of seats and the number of Democratic candidates (primary plus general election) divided by the number of seats. Earlier work found that campaign expenditures for the U.S. House of Representatives in 1978 were greatest for the closest expected races and that an incumbent’s past tenure and past campaign expenditures reduced opponent’s expenditures and increased his own (Lott, 1987a). The odd number legislative specifications also control for how competitive general election, Republican primary, and Democratic primary races are by including measures for the percent of races in these three categories: where there were no challengers, where there were no incumbents, where incumbents opposed each other, and whether the winner won by less than 5 percent, between 5 and 10 percent, between 10 and 15 percent, or between 15 and 20 percent. The intercept then represents the case where there is a challenger facing an incumbent and the election outcome is decided by 20 or more percent. Excluding the variable measuring the total number of candidates running for either the State House or Senate, there are 24 other variables that we will use to measure the degree of competition for these elective offices.

While we do not control for incumbent’s past campaign expenditures, a separate unreported set of regressions were run on a smaller data set that included a variable for the percent of races with incumbents having served eight or more years as a proxy for past investments in reputation or sorting of politicians by ability.
However, this variable was never significant and did not alter the results pertaining to government budget expenditures. The data sources for all the variables that control for the intensity of competition are discussed in the appendix.

Two points should be raised with respect to all of the variables which measure the intensity of the competition for office. The main issue is that it is not obvious a priori what the signs for the variables measuring the closeness of the elections are expected to be. For example, expenditures might be higher when races are decided by less than 5 percent than when the winning margin is between 15 and 20 percent, but it is also possible that candidates committed to making large campaign expenditures discourage strong challengers (e.g., Hersch and McDougall, 1994).

Another issue is that to a large extent measures of the intensity of electoral competition might be proxying for the same things being measured by the state government expenditures. After all, if the government has no transfers to hand out, it makes little difference who wins the race and there should be no motivation to vary expenditures whether races are close or not. Focusing only on state government spending, when measures of the intensity of competition are included in the regressions, is thus likely to underestimate the true impact government transfers have on determining campaign expenditures.

A second category of control variables involves other measures of the return to candidates winning office besides the size of government. For example, the benefit from winning a race depends not only on the transfers the government creates, but also on the effect the race will have on the distribution of those transfers. One way this can manifest itself is whether it will effect who controls the majority in the legislative body. Being in the majority provides large benefits in determining such questions as which pieces of legislation will come to the floor for a vote. The biggest marginal returns to a political party acquiring an additional legislative seat is thus likely to be when that marginal seat determines which party will control as the majority party in that body (Crain and Tollison, 1976 and Jung, et al., 1994). However, as a political party adds to its majority, the marginal return to it acquiring additional seats in that legislature increases if additional seats increase the certainty that the majority will be able to shape outcomes to its liking, though there are likely to
be diminishing marginal returns. This is controlled for by taking the percentage difference in representation between the Republicans and the Democrats in the State House and then likewise for the Senate in each election year. The data were obtained from the Statistical Abstract of the United States.

Economists have also long argued that the value of obtaining a political office depends upon how long lived the property rights are to that office. Offices that have longer terms or that allow politicians to remain in office for an unlimited number of terms are more valuable, and politicians will spend more to try and obtain them. Crain and Tollison (1977) provide some weak evidence that campaign expenditures were greater for gubernatorial elections where the winner received a four year term than where the terms were two years long. They also found that gubernatorial term limits that restricted the number of successive terms a governor could hold office reduced campaign expenditures (see also Besley and Case, 1995b, p. 793). Term limits seem likely to lower expenditures if only because of the reduced incentives to creating long term sunk nontransferable political reputations, and this effect is compounded by the fact that reduced returns to creating nontransferable individual reputations also reduce entry barriers (Lott, 1987a). However, Crain and Tollison’s (1977) study was quite limited in that it examined only cross-sectional evidence and was unable to control for any other factors which could affect the level of campaign expenditures.

While longer terms will increase campaign expenditures when a race takes place, the question is whether this rule will increase total campaign expenditures. Will the campaign expenditures for two two-year terms be equal to one 4-year term? The preliminary evidence from Crain and Tollison indicate that in fact total expenditures are higher for two 2-year terms, though they did not provide an explanation for why this might be so. One possibility is that there are diminishing returns to creating transfers, and that when one is elected the transfers with the greatest marginal return are made first. The second 2-year term would thus not be worth as much as the first 2-year term, and the return to getting one’s favorite politician into office for four years is not worth twice as much as getting one in there for two years. Evidence for a very similar story is provided by Jung, et al. (1994) in explaining why voters do not elect
identically voting senators from the same state. Their explanation focuses on how obtaining wealth transfers reduces successful constituencies’ returns to obtaining additional transfers through electing another senator to represent them.

Variations based upon both the length of terms and limiting the number of terms exist for state legislative offices. If term limits reduce total expenditures, recent initiatives that have imposed legislative term limits provide an opportunity to test it. Data were obtained from U.S. Term Limits listing what states adopted legislative term limits in what years. A dummy variable was included which equaled one in the year that term limits were passed (on the belief that campaign expenditures would already have been effected due to the expectations that limits were being passed). Limiting the term limit dummy to only those states where it was already in effect would have limited the dummy to being equal to one for only two observations: California and Oklahoma in 1992. The reported regression specifications were rerun using this narrower definition of the term limit dummy, but it does not affect the results. Florida, Ohio, and Washington passed their initiatives during 1992, the last year that we have observations on those states.

With respect to each term’s length, all the State House candidates in the sample served two year terms, though there was a fair amount of variation with respect to State Senates: Alabama, Alaska, California, Florida, Kansas, Michigan, Missouri, New Mexico, Ohio, Oklahoma, Oregon, and Washington have 4 years terms and Connecticut, Idaho, Massachusetts, North Carolina have 2 year terms. A variable is included for the length of each term to control for the differing values of holding these different length offices.

Finally, we recognize the possibility of technological change. Over the time studied, innovations include computers, refinements in polling, and mass mailings. While the paper does not include specific variables that reflect such changes since neither measures of how much state level campaigns spent on different portions of their campaigns nor indexes of these costs are available, it is hoped that

2 For related discussions see also Peltzman (1976).
the year and regional dummies will proxy for these changes. If changes in campaign techniques are disseminated and adopted quickly across states, the year dummies should pick up any effects that may exist. We are less concerned about identifying what changes in campaign technology may have affected campaign expenditures than we are about making sure that the changes in government expenditures may not accidentally proxy for some left out affects. Year dummies also help us to pick up any increased competition resulting from redistricting in 1982 and 1992. Because of the small number of observations, regional dummies for only six areas are used: the west, the south, the midwest, the northeast, Alaska, and Hawaii, with the northeast being the excluded variable. Data for Hawaii are only available in the gubernatorial data set. Alaska and Hawaii are given their own dummy variables because of

3 All the regressions reported were also run using individual state dummies, though the results for the gubernatorial regressions indicate that while the relationship between campaign and state government expenditures remains positive, it is no longer always significant for the specifications that examine the log of total campaign expenditures on the log of total state government expenditures. Given that 72 percent of the states only had three gubernatorial campaign observations including a separate state dummy for each state dramatically reduces the variance that can be explained by the other variables. Six of the states only have between one and three observations for state House and Senate elections, which also limits the amount of information that is available after individual state dummies are used in those regressions.

4 In the results that follow were also rerun with a time trend in place of the year dummies just to check the consistency of the results with those reported earlier for the Federal government and the results were similar. Given the advantages of using year dummies over a time trend, the Federal data would have ideally used year dummies, but that was impossible due to the limitations of using time series data. See also footnote 13 for a related discussion.

5 The West includes Washington, Oregon, California, Arizona, Nevada, Idaho, Montana, Utah, Wyoming, Colorado, and New Mexico; the South includes Texas, Louisiana, Mississippi, Alabama, Florida, Georgia, South Carolina, North Carolina, Virginia, Tennessee, Arkansas, and Oklahoma; the Midwest includes North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, Ohio, Kentucky, and West Virginia; and the remaining states in the Northeast are classified under that label. Not all of these states have data when we examine legislative expenditures. Those states where data is available are still placed into the above categories.
their unusually high costs and per capita incomes. Including Alaska as part of the west doubles the t-statistics for the per capita government expenditure variables and leaves the ln(state expenditures) largely unchanged.6

B. The Results for State Campaign Expenditures After Controlling for Other Effects

We divide up legislative expenditures between state house and senate races because there are not enough observations for us to control for all the different measures of the level of competition for both types of races in one regression. Tables 3 and 4 present the results when the control variables described in Section III.A. are used. In all cases, the relationship between state budget expenditures and state House or Senate campaign expenditures continues to be both statistically and economically significant. For example, using specifications 1 and 3 in both tables and the standard deviations corresponding to the samples in these regressions implies that a one standard deviation change in state government spending will explain between 52 and 83 percent of a one standard deviation change in state House campaign spending and between 71 and 84 percent of a one standard deviation change in state Senate campaign spending.

Another way of gauging the economic importance of these results is to compare the actual change in campaign expenditures with the predicted amounts. Seven states were available in both 1978 and 1992 for both the House and Senate data sets. Using specification 3 in both tables, the change in per capita state government expenditures implied that per capita state House and state Senate campaign expenditures should have risen by 53 and 55 cents respectively. The actual increases were 58 and 49 cents. While other variables such as the closeness of races changed over time, simply taking account of higher state government expenditures explains either 92 or 111 percent of the eventual increase.

Combining specification 3 from both Tables 3 and 4 indicates that a $1000 increase in per capita state government expenditures (an increase of less than a third for these observations) will increase real per capita state legislative campaign expenditures by 35 percent (or 99

6 Alaska makes up 13 percent of the sample for both the state House and Senate samples.
cents). While other variables are at times significant, only the coefficient for state expenditures is statistically significant in all the specifications.

The only other variables that indicate a consistent, though not always statistically significant, pattern are term limits, the state’s population, general election races with incumbents (particularly senate incumbents), and the percentage of seats in the general election that were won by less than 5 percent. Term limits generally imply lower campaign expenditures, the larger states tend to exhibit some diseconomies in campaigning, and the absence of incumbents in the general election or the more general election races that are decided by less than 5 percent the higher are campaign expenditures. The percentage difference in party control of the legislative bodies was consistently negative as predicted only for senate races, and even then it was statistically significant only once. Possibly because of the very few number of observations, term limits was only negative and statistically significant in only one of the specifications.7

Since I had no strong prior beliefs concerning the exact functional relationship between state government expenditures and income, specifications 3 and 4 in these two tables were rerun with a new variable included for squared per capita income.8 The coefficients indicated that campaign expenditures increased at a decreasing rate with income, though neither of these variables were ever statistically significant. At least for legislative races, the bottom line seems to be that it is the amount transfers controlled by the government that determines campaign expenditures and not the potential income that governments can acquire as represented by a state’s personal income.

7 The year dummies were almost always insignificant, and they only implied a consistent (though insignificant) pattern in the state senate regressions examining per capita campaign expenditures.

8 At the suggestion of a referee, additional variables were also added to control for a state’s urbanization (measured either in terms of population per square mile or the percent of a state’s population living in a SMSA). This was done with using state and year fixed effects and the other variables discussed above and it did not alter the findings.
C. The Relationship Between State Government Expenditures and Gubernatorial Campaign Expenditures

The specifications for gubernatorial campaign expenditures are generally very similar to those for legislators. However, several relatively small differences do arise. For example, since we are dealing with only one office being contested in any state during any year we can easily measure the winning margin between the top two candidates in the general and primary elections as a continuous variable. This winning margin is measured in percentage points. Term limits are also much more common and variable for governors than legislators during our sample, thus allowing us to control for the effect of the term limit lengths. Following Crain and Tollison (1977) we assume that the longer politicians are allowed to serve as governor, the more valuable becomes the property right and hence the greater campaign expenditures. Presumably, this is true whether one is talking about the limits imposed by term limits or limits on the length of any given term. If Jung et. al. (1994) are correct, a divided legislature should reduce the returns to winning the governorship because opposing political parties can already ameliorate the more extreme wealth transfers proposed by the other party. This is controlled for by a dummy variable that equals one whenever opposing parties control the different houses. The variables that measure the margin of party control in the state houses and senates use the absolute percent differences between the parties in each body. (In all these cases Nebraska was excluded from the sample, though setting its values to zero and including it does not affect the results.)

The results shown in Table 5 are fairly similar to those already reported. State government expenditures again stands out as the most consistently significant coefficient and these coefficients are always positive and economically large. The state government expenditure coefficients imply that a one standard deviation increase in government expenditures can explain between 54 and 69 percent of a one standard deviation change in state gubernatorial campaign spending. Using specifications 3 and 4, thousand dollar increase in per capita state government expenditures implies about a 60 percent increase in total gubernatorial campaign expenditures.
Other results also tend to be more consistently significant than in the smaller data sets that we used for legislative offices. The most consistent results indicate that campaign expenditures are highest when no incumbent is running and the winning margin between the top two general or primary election candidates is small. Term limits again decrease campaign expenditures, and the effect can be quite large: increasing a governor’s maximum tenure from 8 years to 16 can increase the average campaign expenditures by as much as 31 percent. However, the results also present something of a puzzle. Increasing term lengths has the surprising effect of lowering campaign contributions, and this effect can also be quite large, though it is statistically significant in only two specifications. Using specifications 3 and 4, increasing terms lengths from 2 to 4 years, reduces expenditures by more than an increase in term limits from 8 to 16 years. The results continue to indicate that per capita income is not particularly important in explaining campaign expenditures.

Data on two types of campaign expenditure limit laws were also collected: dummy variables for whether there are limits on contributions and for whether corporations are allowed to make contributions. These variables were not statistically significant and their inclusion did not alter the other results presented in the paper.

D. The Question of Causality

Do higher government expenditures increase the returns to higher campaign expenditures or are the regressions capturing the reverse relationship? Higher government spending could be the result of higher campaign expenditures, as winning candidates may provide greater transfers to those groups that gave them money (e.g., Baron, 1989). Alternatively, however, winning candidates may reduce existing negative transfers from their supporters. It is not obvious whether higher campaign expenditures will generally be followed by either greater or lower transfers.

9 The year dummies were again almost always insignificant.
10 Baron (1989) models a contest where candidates offer political services or interventions with the bureaucracy to attract contributions. The greater the expected offered level of services the greater the contributions made to the campaign.
Yet, even if higher past campaign contributions do increase future government expenditures, some evidence already exists on the timing of campaign expenditures and changes in legislative outcomes. Bronars and Lott (1993) show that while campaign contributions do not alter how individual politicians vote, donors give money to politicians who agree with the donors. Other evidence also indicates that individual politicians exhibit extremely stable voting patterns over time (Lott and Davis, 1992; Poole and Romer, 1993; and Lott and Bronars, 1993). There appears to be little possibility of contributions bribing existing politicians into voting differently. Instead, the way to produce new government policies is to alter the legislature's composition and larger campaign expenditures can help do this. Any reward to donors from electing a different type of politician does not occur until after the election, and should not be a major problem here as we use contemporaneous campaign and budget expenditure data for our regressions. Thus, if a group spends a lot of money to elect a big-spending politician, government spending today is not affected, and cannot produce a false positive relationship between the contemporaneous values for campaign and budget expenditures.

However, it might be claimed that campaign expenditures in a given year are not truly determined anew every year, but depend on their own past levels, and that its own past levels also affect the current level of government spending, so that a spurious relationship might arise simply by looking at contemporaneous values of campaign and budget expenditures. Past campaign expenditures

11 By combining the campaign contributions literature with the evidence that politicians intrinsically value policy outcomes, Bronars and Lott (1993) tests whether politicians' voting patterns change when the retire and no longer face the threat of lost campaign contributions. If contributions are causing individual politicians to vote differently, there should be systematic changes in voting behavior when future contributions are eliminated. On the other hand, if voters give to candidates who intrinsically value the same policies that they do, there should be no last period changes in how a politician votes. The evidence strongly confirms this second hypothesis.

12 There is some evidence that an individual's past campaign expenditures affects his level of current campaign expenditures (Lott, 1987a). There is also the possibility that there are other unmeasured factors that determine a state's legislative or gubernatorial campaign expenditures over time and that a state's campaign expenditures are correlated over time because of these factors.
could then be viewed as a third variable influencing campaign spending and current government expenditures. A simple way to account for such a possibility is to include past campaign expenditures as an explanatory variable. Thus, we reran the second and forth specifications in Tables 3, 4, and 5 by including a variable for the preceding election's campaign expenditures.

The results reported in Table 6 consistently support the earlier findings that higher government spending produces significantly higher campaign expenditures, and the sizes of these coefficients are between 78 and 104 percent of their corresponding values in the earlier reported specifications. Though the coefficients for lagged campaign expenditures are always positive, they are statistically significant in only four of the six specifications. The other coefficients are generally similar, though less significant, than those shown in earlier specifications. For example, the gubernatorial evidence on shorter length term limits reducing campaign expenditures is similar to the evidence reported in Table 5, and the legislative evidence that term limits reduce expenditures remains extremely weak.

To deal with the question of whether lagged campaign expenditures increase or decrease current government expenditures, government expenditures were also run on both lagged campaign expenditures and government expenditures. Lagged government expenditures are included because of the large literature that indicates that current government expenditures are not determined independently of past expenditures (e.g., Higgs, 1987). Some have even argued that past government expenditures generate support for future transfers (e.g., Lott, 1990). Again, both the per capita and natural logged values of government expenditures and campaign expenditures are examined, though this time we only control for the most obvious explanatory variables for government growth: per capita income, population, those two variables squared, and year and regional dummy variables (see also Peltzman, 1980, pp. 266-271).13

13 The use here of regional dummy variables can also be roughly interpreted in terms of Case et. al's (1993) and Besley and Case's (1995a) papers suggesting that state spending may respond to spending decisions made in neighboring states and to yardstick competition more generally. The variables that Peltzman uses for education are not used here because we accept Lott's (1990)
Using the other control variables employed in Table 6 or the squared values of income and population tends to make the coefficients reported for lagged campaign expenditures slightly more negative.\footnote{When the term limit variable is included it affect is always negative but insignificant. The results seem most consistent with Besley and Case's (1995b) findings that term limits either do not affect state government spending under Republican governors or that when they do affect spending under Democratic governors the net affect over a governor's entire tenure in office is essentially zero. While Crain and Oakley (1995) find a significant effect of term limits on the level of state government capital expenditures, they do not examine the question of total government expenditures. Wittman's (1989, pp. 1409-1410) political science survey provides an explanation for why term limits for legislators might have different implications for government growth than term limits for governors. He examines the literature that argues that legislators favor government growth more than governors. If true, term limits on governors would tend to weaken them relative to the legislatures and thus tend to increase government spending, while term limits on legislators would tend to do the reverse. Wittman's arguments against these beliefs about the biases of legislator and governors on spending may help explain these insignificant results.}

These new results are reported in Table 7 and indicate that past campaign expenditures significantly decrease current government expenditures as frequently as they increase them. There is no consistent pattern across types of office. In addition, even though the effect of past campaign expenditures on government spending is statistically significant for the state House regressions, the effect is quite small economically. Specification 4 implies that a one standard deviation change in campaign expenditures explains less than a half of one percent of a standard deviation change in per capita state government expenditures, while specification 1's negative coefficient implies that lagged campaign expenditures explains less than 10 percent. The evidence indicates that while some of the previous specifications are consistent with past contributions increasing government expenditures, this reverse causality is certainly not prevalent enough to explain the results in all the previous regressions linking increased government and campaign expenditures.

One final method of dealing with the causality issue is to run the regressions on differences. Table 8 shows these results when the explanation that it is the level of government expenditures which determine the level of education expenditures.
changes in both per capita campaign expenditures and the natural log of campaign expenditures are run on changes in the analogous values of state government expenditures and the changes in per capita income, the total number of candidates, and population. The specifications were again run using the state House and Senate and Gubernatorial data sets, and all the regressions continue to control for both year and region dummies. The results consistently indicate that changes in either state government expenditures or the total number of candidates for the relevant office, and the effects of government expenditures continue to be quite important economically. For example, the coefficients that relate the change in the log of campaign expenditures to the change in state government expenditures imply that a one percentage point change in government expenditures increases campaign expenditures by between .77 and .94 of a percentage point.

The regression results from Tables 6, 7, and 8 thus help confirm our hypothesis that higher government spending directly increases campaign expenditures and provides evidence that the earlier regressions were not simply picking up the reverse relationship. Even if the causality runs from campaign spending to government expenditures it cannot explain all the results.

VI. Is it the Composition of Expenditures or Revenues that Matters?

If it is the size of government that determines how much effort is spent competing for political office, do certain types of expenditures draw more intense competition than others? One might presume that at the margin politicians have allocated resources so that the marginal intensity of feelings are equalized (Becker, 1976, 1983, and 1985 and Peltzman, 1976). For instance, increasing educational expenditures by $10 per capita should not generate a more intense response in terms of campaign expenditures than would the same increase in highway construction. Yet, this empirical result might not hold even if politicians do equate intensity of feelings, since support and opposition can take many forms besides campaign contributions. In addition, there may be other ways of attempting to organize support or mitigate the opposition besides using campaign expenditures. If one believes that politicians are
equating marginal support and opposition across all these margins, the way to interpret any significant differences in results when the composition of state government expenditures are broken down is as a proxy for these left out measures of cost. The problem is further complicated because some large areas of the state budgets are more heavily subsidized through Federal transfers.

To examine this question, we broke down state government expenditures into its four largest categories: education, highways, welfare, and health. Likewise, revenues were broken down into individual income taxes, corporate income taxes, sales taxes, and property taxes. All the data were collected from the Statistical Abstract of the United States.

Using the specifications shown in Tables 3, 4, and 5, twelve regressions were run replacing either the natural log of state expenditures or the per capita state expenditures with their analogous versions of these four different components of expenditures and eight more regressions were run replacing these measures of total state expenditures. The specifications using the composition of expenditures are reported in Tables 9, 10, and 11. The specifications using different sources of tax revenue are not reported since virtually all these coefficients had very low t-statistics.

Tables 9 and 11 show that larger educational expenditures are most consistently associated with higher campaign expenditures in state House and gubernatorial races, while all three tables usually indicate that higher highway spending increases all three kinds of state campaign expenditures. Table 10 provides evidence that higher health care spending increases state senate campaign expenditures. Some of the effects are quite large economically. Specifications 1 and 3 in Table 9 implies that a one standard deviation increase in per capita educational expenditures can explain between 45 and 68 percent of a one standard deviation change in state House campaign spending. The analogous numbers for highway expenditures are much more variable, ranging from 5 to 72 percent. It is puzzling why educational expenditures seem to be so important in explaining state House and gubernatorial campaign expenditures and tend to
have the opposite (though insignificant) effect on state senate expenditures. These regressions might have been easier to decipher if they had used data that predated the Supreme Court's 1964 decision striking down state rules that apportioned state House seats on the basis of population and State Senate seats on the basis of geography, often giving disproportionate electoral weight to more rural areas of a state which might attach a greater weight to easy access to highways. While regressions that use only one of the measures of expenditures or taxes at a time provide statistically significant and positive results, the high correlations between the different variables makes it harder to identify significant positive relationships when all the variables are used simultaneously. Yet, the bottom line seems to be that the total level of expenditures are more consistently important in determining campaign expenditures than are any particular components of those expenditures or sources of those revenues.

VII. Does the Competition for Increased Government Expenditures also Take the Form of Increasing the Number of Candidates Who Run for Office?

Competition for resources can take many dimensions. While interest groups are willing to spend more money to elect their representatives as winning office becomes more valuable, they may also compete by having more politicians run for office. As government becomes larger, the attractiveness of becoming a politician should increase. Using the variables we have already employed to explain campaign expenditures, we can also attempt to explain the number of candidates: does the number of legislative or gubernatorial candidates increases with state government expenditures? The regressions shown in Table 12 for the state Houses, Senates, and Governorships attempt to control for: whether incumbents are running in either the primary or general elections, term limits, a state's population and per capita income, and the likelihood that the election will alter which party will control the balance of power in their legislature or the state. The explanations

\[15\] For a paper that atests to the strength of political influences in determining the level of educational expenditures see Peltzman (1993) and Friedman (1993).
for including these variables are similar to those described earlier, with two exceptions: population and income. These are in part included so as to provide continuity with the preceding regressions, but, in addition, for a given number of seats a greater population may provide a larger pool of potential candidates and if political participation is a normal good, higher incomes could result in more candidates running for office.

For the legislative races, we also control for the number of seats that are up for election in each state. By contrast, since there is only one gubernatorial election in any year, the intercept in the gubernatorial regression is picking up this effect. We also reran the legislative regressions by respecifying the endogenous variables as the number of candidates divided by the number of seats up for election, though none of the reported results were appreciable altered by this respecification.16

The results in Table 12 suggest that there is no systematic significant relationship between per capita state government expenditures and the total number of candidates, and even when the effect is significant for state Senate races it is relatively small: a one standard deviation change in per capita income explains only 10 percent of a one standard deviation change in the total number of candidates. Putting an additional state House or Senate seat up for election produces slightly more than two new contestants. The most consistent significant effects are whether there are incumbents running in the Republican and Democratic primaries with the legislative results implying that on average between 2 to 2.8 new candidates enter for each incumbent who decides not to run for reelection and the gubernatorial results imply that is range is between 2.3 and 2.4. The insignificant results for the effect of whether there is an incumbent in the general election may simply result from the high degree of collinearity with the other two measures of whether incumbents are running for reelection. More lopsided control of a state legislature appears to discourage entry, but the effects are insignificant.

16 Presumably, a more micro level data set that did not merely summarize the legislative elections in each state but attempted to explain the number of candidates in each race in each state might also attempt to control for the past investments in political reputation made by individual candidates.
Finally, there is one interesting result with respect to term limits. Combining Table 11’s results with those reported earlier, there is some weak evidence that legislative term limits reduce campaign expenditures and increase the number of candidates running for office. However, while the evidence that term limits reduce expenditures is strongest for gubernatorial and Senate elections, the evidence that they increase the number of candidates is strongest for House elections. The negative effect of term limits on legislative campaign expenditures might prove to be more significant once term limits have been in place longer and more data has been acquired, but the initial evidence is consistent with the notion that term limits will reduce entry barriers in political markets.

VIII. Does the Competition for Increased Government Expenditures also Take the form of Increasing the Number of Terms that Politicians Remain in Office?

Competition for government resources might also take the form of increasing legislator tenure. The longer incumbents stay in office, the more they acquire skills that help them pass legislation (e.g., increased familiarity with legislative rules and procedures, acquisition of seniority, and development of contacts and political favors necessary for logrolling). A congressional district’s relative success in creating transfers depends not only upon their representative’s stock of skills but also his skills relative to other district’s representatives (Dick and Lott, 1993, p. 6). This has important implications relating government size and tenure. When government wealth transfers are low the opportunity cost of removing a politician who has acquired skills at creating transfers is also low. As the level of transfers increases so to does the opportunity cost of removing a relatively experienced representative (Dick and Lott, 1993, p. 13).

A simple measure of a congress’s expected tenure is the number of terms congressmen who enter into congress during that year stay in congress. To calculate this, entering congressmen were followed over their next ten terms. While some congressmen did remain in office for more than twenty years, using longer periods reduces the number of observations. Using data from 1856 to 1992, the Pearson correlations of .7286 and .9081 between either per capita or the natural log of federal government expenditures and tenure imply a
strong significant positive relationship. However, the plotted data in Figure 4 is less persuasive. While tenure exhibits a continuous upward trend over the entire period, government expenditures do not indicate a similar relationship until the early 1930s. The definite break in the data pattern shown for government expenditures does not appear to coincide with any obvious changes in tenure.

Yet, there is still the question of whether there is a significant relationship between tenure and government expenditures when other variables are controlled for such as male life expectancy, number of days that congress is in session, and real congressional salaries or the relative salary of legislators to lawyers. The number of days in session and salary data are used to measure the costs and benefits to being in congress, while life expectancy can be interpreted either in terms of opportunity costs or the physical limits face to being in office. The data on life expectancy were obtained for 1900 to the present from *Historical Statistics of the United States* and various issues of the *Statistical Abstract* of the United States.

Data on the number of days congress was in session and salary information were obtained either from Stigler (undated, Appendix 4) or a Nexis search of news articles on congressional salaries and days in session. Congressional salaries and the number of days congress is in session is available from 1856 to 1992, and the data on law partners’ salaries is available from 1930 to 1978. Stigler (p. 11) finds some evidence that the increases in tenure can be explained by the relative salaries of congressmen and lawyers and a time trend. Presumably the changing prices and time costs of transportation also played an important role, but I was unable to find such indexes.

As Table 13 shows, the relationship between expenditures and tenure is not significant when other variables are controlled for. Specifications 1, 2, 4, and 5 are reported with only real congressional salaries because law partner salaries were not available before 1930, and specifications 1 and 3 are included exclude life expectancies because those values are not available yearly before 1900. The specifications also use both per capita and the natural log of federal government expenditures.

\[\text{Table 13}\]

17 Not having observation after 1978 is not a binding constraint on the number of observations used in the regression because tenure requires ten terms to calculate.
A line is added to the data to indicate 1925-26 so that the reader can better discern whether there is any change in tenure lengths before and after the change in the growth in per capita Federal government expenditures.
None of the government expenditure variables in any of the six specifications are significant and the effect they imply are quite small economically. For example using specification 4, a one standard deviation change in per capita federal government expenditures explains less than 10 percent of a standard deviation change in tenure. Perhaps the table's most interesting finding is that the time trend is the only significant variable in four of the specifications and in the other two specifications the only significant variable is male life expectancy.

IX. Conclusion

Over the last couple of decades, most of the increase in campaign expenditures can be explained by higher government spending. This result holds for both Federal and state legislative campaigns and gubernatorial races. The paper also finds that the level of government expenditures more consistently predict higher campaign expenditures than does either the composition of the expenditures or the percentage of government revenue derived from different revenue sources. While the competition for government transfers seems to take the form higher campaign expenditures, there is little evidence that it takes the form of increasing the number of candidates running for office or lengthening term lengths.

The public policy debate presumes that all the supposed evils of campaign finance would be simply solved by putting limits on donations or on the total amount that candidates can spend. Yet, as with other types of controls, one risks merely changing the form of payments rather than really restricting the level of payments. The debate unfortunately focuses on the symptoms and not the root causes of the ever higher expenditures. This paper suggests that if one really wants to reduce the resources society spends on campaigns, the solution is to make the government smaller. The paper also provides some weak evidence that legislative term limits reduce campaign expenditures and increase the number of candidates running for office.

However, just as with the concerns that we have raised over reducing campaign expenditures through placing spending limits, there are difficulties inherent in limiting government spending. For example, preventing transfers from taking the form of budget
Campaign Expenditures

Campaign expenditures may simply make them take other forms like regulations. There is also the concern that these new methods of transfers will involve greater deadweight losses than their previous forms (Coate and Morris, 1995 and Lott, 1996).

Understanding the cause of increased campaign expenditures also puts into perspective the claim that campaign expenditures are “too large.” The real puzzle should actually be: why are campaign expenditures so small when there is so much money at stake? Why are Federal budget expenditures 2500 times larger than total Federal legislative campaign expenditures and State budget expenditures 1250 times larger than total state legislative campaign expenditures? Possibly, government expenditures produce few rents or that the expenditures are taking many other forms. If this last point is true, the question then becomes: why is it preferable that the rent-seeking primarily take forms other than campaign contributions, or does it matter? Alternatively, it just might be extremely costly to produce the what rents the government produces.
Bibliography

Grad, Shelby, “Popejoy Backs Statewide Campaign Reforms; Legislation: Former county chief executive officer, speaking at news conference, says ballot measure would encourage political newcomers by limiting incumbents’ ability to amass huge war chests,” Los Angeles Times (November 2, 1995): 1.

Jung, Gi-Ryong; Lawrence W. Kenny; and John R. Lott, Jr., “An Explanation for Why Senators from the Same State Vote

Data Appendix: List of Sources

Gubernatorial Election Data

Total campaign expenditures (in 1992 $) by candidates for primaries, runoffs, and general elections were obtained from The Book of the States 1994-1995 and earlier years.

Total state expenditures (in 1992 $) were obtained from either the Statistical Abstract of the U.S. or the World Almanac and Book of Facts.

Per capita income of state residents (in 1992 $) were obtained from various years of the Statistical Abstract of the United States.

Total state taxes (in 1992 $) were obtained from the Statistical Abstract of the U.S..

The absolute margin of control in the State Senate and House of Representatives: Offices that were either vacant or occupied by an independent were not counted in either the numerator or the denominator. The source for this was the World Almanac and Book of Facts.

The dummy variable for whether the control of the state legislatures is split takes the value of 1 if there is split control of the
Legislature and the Senate in a given and year. Missing values were assigned to Nebraska for all years, because it has a unicameral legislature of 49 members who are elected on a nonpartisan ballot. The source for this was the World Almanac and Book of Facts.

The length of a governor's term (in years) is obtained from The Book of the States 1978-1995, Tables entitled “The Governors.”

The maximum number of consecutive years that a governor may serve were also obtained from The Book of the States 1978-1995, and from Congressional Quarterly's Guide to U. S. Elections, Third Edition, p. 635. An entry of 0 means that there is no limit. Between 1978 and 1992 six states (California, Colorado, Hawaii, New Mexico (1991), South Carolina, and Tennessee) changed their policies regarding the maximum number of consecutive years that a governor could serve. Since our election data only go through 1990 for New Mexico its change will not be observed in our sample.

A term limit dummy variable takes the value of 1 if there is a limit on the number of consecutive terms a governor may serve and takes the value of 0 if there is no such limit. Between 1978 and 1992 three states (California, Colorado, and Hawaii) introduced a term limit for governors. During this period three other states (New Mexico, South Carolina, and Tennessee) increased from one to two the number of consecutive terms that a governor could serve. This is obtained from The Book of the States 1978-1995, and from Congressional Quarterly's Guide to U. S. Elections, Third Edition, p. 635. An entry of 0 means that there is no limit.

The dummy variable for whether there is an incumbent in the general election takes on the value of 1 if there was an incumbent in the general election and a 0 if an incumbent was not in the general election. (Sources: 1990-1992 data taken from The Book of the States 1994-1995, p. 39. For 1986-1989, the data is taken from The Book of the States 1990-1991, p. 52.)

The absolute margin of victory in the general election was calculated as the difference in the percentage of votes between the top two candidates in the race. The sources for this data are The Book of the States and The Almanac of American Politics which was used for the elections in which third party or independent candidates finished in the top two in the general election.

The number of candidates in the general election that received more than 5% of the vote was obtained from Congressional

The variables for whether there was an incumbent in the Republican or Democratic primaries, the absolute margin of victory between the top two contestants in those primaries, the number of candidates with over 5 percent of the vote in those primaries, and information on whether those primaries were uncontested were all obtained from Congressional Quarterly's Guide to U. S. Elections (third edition).

In Connecticut, party conventions nominate candidates by convention. However, if an individual receives at least 20% of the convention vote, then he is allowed to petition for a challenge primary. Only in 1986 was there a Republican challenge primary. For the other years the dummy for whether the primary was contested was set equal to 1 and the margin of victory in the primary was set equal to 100, thus interpreting the lack of a challenge to imply that the convention was uncontested.

In Delaware, party conventions nominate candidates by convention. However, if an individual receives at least 35% of the convention vote, then he is allowed to petition for a challenge primary. Challenge primaries occurred in 1980, 1984, 1988 and 1992. However, only in 1992 did someone not receive 100% of the primary votes. Therefore, the dummy for whether the primary was contested was set equal to 1 and the margin of victory in the primary was set equal to 100 for all years except 1992.

Utah had Republican and Democratic primaries in 1976, 1984 and 1992. In 1980 and 1988 it had conventions for both parties. Virginia had a Republican primary in 1989 and a Democratic primary in 1977. For all other years there were conventions. For these convention observations no values were assigned to the data. Louisiana's values were omitted for all years, because it has a non-partisan open primary that requires all candidates, regardless of party affiliation, to appear on a single ballot.

State Legislative Election Expenditures

Primary and general election information on vote margins, number of seats up for election, percent of seats with no challengers or incumbents, the total number of candidates, campaign
expenditure information were obtained from the following sources. The information was collected by first writing to the state Secretary of State offices and state election commissions and then following up with telephone calls.

Alabama
Printed information for 1990 was obtained from Alabama's Secretary of State Jim Bennett's office.

Alaska
Primary Election Results

General Election Results

California
Primary Election Results
California Secretary of State, Statement of Vote and Supplement Primary Election, June 6, 1978; June 5, 1984; and June 3, 1986.

General Election Results
California Secretary of State, Statement of Vote and Supplement General Election November 7, 1978
California Secretary of State, Statement of Vote General Election November 4, 1980; November 2, 1982; November 6, 1984; November 4, 1986; November 8, 1988; November 6, 1990, General Election; and November 3, 1992, General Election

Connecticut
Primary Election Results
State of Connecticut Office of the Secretary of State Elections
Services Division, Statement of Vote, September 14, 1988; September 11, 1990; and September 15, 1992.
General Election Results
State of Connecticut Secretary of the State, Statement of Vote
General Election November 8, 1988; November 6, 1990; and
November 3, 1992
Campaign expenditure information is contained separately on
photocopied sheets from the secretary of state’s office.

Florida
Primary Election Results
Florida Department of State Division of Elections, Tabulation of
Official Votes Florida Primary Elections Democratic, Republican and
Nopartisan September 12, 1978 and October 5, 1978; September 9,
1980 and October 7, 1980; September 7, 1982 and October 5, 1982;
September 4, 1984 and October 2, 1984; September 2, 1986 and
September 30, 1986; September 6, 1988 and October 4, 1988;
September 4, 1990 and October 2, 1990; and September 1, 1992 and
October 1, 1992.
General Election Results
Florida Department of State Division of Elections, Tabulation of
Official Votes Florida General Election; November 7, 1978;
November 4, 1980; November 6, 1984; November 4, 1986;
November 8, 1988; November 6, 1990; and November 3, 1992
Campaign expenditure information is contained separately on
photocopied sheets from the State Division of Elections’ office.

Idaho
Primary Election Results
Idaho Secretary of State, Official Vote Totals Primary Election -
May 27, 1986; May 24, 1988; May 22, 1990; and the Idaho
Secretary of State, Legislative District Totals 1992 Primary Election.
General Election Results
Idaho Secretary of State, Official Vote Totals/Legislative
Districts General Election - November 4, 1986; also November 8,
Campaign expenditure information is contained separately on photocopied sheets from the secretary of state's office.

Kansas
Primary and General Election Results: Kansas Secretary of State, Election Statistics State of Kansas 1982 Primary and General Elections (the analogous publications for 1984, 1986, 1988, 1990, and 1992 were also used).
Campaign expenditure information is contained separately on photocopied sheets from the secretary of state's office.

Michigan
General Election Results
Campaign expenditure information is obtained from various issues of Michigan Election Statistics.

Missouri
Primary and General Election Results
Ohio
Primary and General Election Results and Campaign Expenditures

Oregon

North Carolina

Washington
Primary Election Results

General Election Results

Other Data
Federal and state data on per capita income, population, state government expenditures and the breakdown of those expenditures by type were obtained from the Statistical Abstract of the United States.
Total Federal campaign expenditures for the House and Senate and the total number of candidates for those offices were obtained from press releases put out by the Federal Election Commission.
Readers with comments should address them to:

John R. Lott, Jr.
John M. Olin Fellow in Law and Economics
The Law School
The University of Chicago
1111 E. 60th Street
Chicago, IL 60637

(Tables Follow)
Table 1: Changes in Campaign Spending Over Time

A) Comparing the Real Per Capita Increases in Campaign Expenditures for All Candidates Who Ran for a State's House or Senate (The comparisons in this table are made only for those states where data covering at least 4 election cycles are available.)

<table>
<thead>
<tr>
<th>State</th>
<th>Election Cycles Covering Years from</th>
<th>Percent Change in Real Per Capita Expenditures for State House and Senate Races</th>
<th>Comparison Over the Same Period for Real Per Capita Increases in National Advertising in the U.S.</th>
<th>Comparison Over the Same Period for Real Per Capita Increases in Federal Senate and House Races*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>1976-92</td>
<td>29.3</td>
<td>84.6</td>
<td>137.5</td>
</tr>
<tr>
<td>California</td>
<td>1976-92</td>
<td>25.2</td>
<td>84.6</td>
<td>137.5</td>
</tr>
<tr>
<td>Florida</td>
<td>1978-92</td>
<td>44.5</td>
<td>63.4</td>
<td>41.5</td>
</tr>
<tr>
<td>Idaho</td>
<td>1976-92</td>
<td>45.8</td>
<td>84.6</td>
<td>137.5</td>
</tr>
<tr>
<td>Kansas</td>
<td>1982-92</td>
<td>26.0</td>
<td>73.2</td>
<td>24.4</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1986-92</td>
<td>30.2</td>
<td>14.1</td>
<td>10.9</td>
</tr>
<tr>
<td>Michigan</td>
<td>1978-92</td>
<td>101.0</td>
<td>63.4</td>
<td>41.5</td>
</tr>
<tr>
<td>Missouri</td>
<td>1978-90</td>
<td>22.1</td>
<td>70.98</td>
<td>2.4</td>
</tr>
<tr>
<td>Oregon</td>
<td>1972-92</td>
<td>185.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>for comparison only</td>
<td>1976-92</td>
<td>111.0</td>
<td>84.6</td>
<td>137.5</td>
</tr>
</tbody>
</table>

* Federal campaign expenditures are not available prior to 1976.
Washington 1978-92 100.0 63.4 41.5
Average 54.4** 68.7 71.2
Percentage Increase 1976-94 113.7 136.0

B) Real Per Capita Increases in Campaign Expenditures for All Candidates Who Ran for a State's Governorship (Arkansas, New Hampshire, Rhode Island, and Vermont have observations that occur in both the first two sets of states.)

<table>
<thead>
<tr>
<th>States with Elections during:</th>
<th>Percent Change in Real Per Capita Expenditures</th>
<th>Number of States</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 1982, 1986, 1990</td>
<td>58.0</td>
<td>36</td>
</tr>
<tr>
<td>3) 1977, 1981, 1985, 1989</td>
<td>137.0</td>
<td>2 (New Jersey and Virginia)</td>
</tr>
</tbody>
</table>

** This average uses the 1976 to 1992 period for Oregon.
Table 2: Sample Means and Standard Deviations

(All dollar values are in real 1992 dollars. Standard deviations are in parentheses and the number of observations are listed below that. The column entitled “All State Legislative Campaigns” sums up the campaign expenditure data for State Senate and House races when data for both races are available for a particular year in a state.)

<table>
<thead>
<tr>
<th>Variable Descriptions</th>
<th>Federal Legislative Campaigns</th>
<th>All State Legislative Campaigns</th>
<th>State Senate Legislative Campaigns</th>
<th>State House Legislative Campaigns</th>
<th>Gubernatorial Campaign Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Campaign Expenditures)</td>
<td>20.001 (0.299)</td>
<td>15.93 (1.009)</td>
<td>14.72 (1.100)</td>
<td>15.26 (1.086)</td>
<td>15.47 (1.067)</td>
</tr>
<tr>
<td>Per Capita Campaign Expenditures</td>
<td>2.09 (0.4524)</td>
<td>2.78</td>
<td>0.903</td>
<td>1.51</td>
<td>2.575</td>
</tr>
<tr>
<td>Ln (Federal Budget Expenditures)</td>
<td>27.785 (0.151)</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Ln (State Budget Expenditures)</td>
<td>. . .</td>
<td>23.02</td>
<td>23.02</td>
<td>16.07</td>
<td>22.49</td>
</tr>
<tr>
<td>Per Capita Federal Budget Expenditures</td>
<td>4922 (452.8)</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>Variable Descriptions</th>
<th>Federal Legislative Campaigns</th>
<th>All State Legislative Campaigns</th>
<th>State Senate Legislative Campaigns</th>
<th>State House Legislative Campaigns</th>
<th>Gubernatorial Campaign Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita State Budget</td>
<td>. . .</td>
<td>2945</td>
<td>2945</td>
<td>2894.88</td>
<td>2290.93</td>
</tr>
<tr>
<td>Expenditures</td>
<td>(2226)</td>
<td>81</td>
<td>(2226)</td>
<td>(2131.26)</td>
<td>(1102.11)</td>
</tr>
<tr>
<td>% Difference in Representation Between Major Parties</td>
<td>. . .</td>
<td>. . .</td>
<td>0.253(0.168) 81</td>
<td>0.265(0.1596) 91</td>
<td>. . .</td>
</tr>
<tr>
<td>Total Number of Candidates</td>
<td>2014.9</td>
<td>275</td>
<td>59.45</td>
<td>249</td>
<td>4.565</td>
</tr>
<tr>
<td></td>
<td>(523.7)</td>
<td>(87.6)</td>
<td>(28.41)</td>
<td>(84.32)</td>
<td>(1.69)</td>
</tr>
<tr>
<td>Population</td>
<td>238,188,600</td>
<td>6,902,488</td>
<td>6,902,488</td>
<td>6,685,681</td>
<td>4,402,343</td>
</tr>
<tr>
<td></td>
<td>(14,153,412)</td>
<td>(7,595,000)</td>
<td>(7,595,000)</td>
<td>(7,355,442)</td>
<td>(4,858,034)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>81</td>
<td>81</td>
<td>91</td>
<td>178</td>
</tr>
</tbody>
</table>
Table 3: Explaining Total Campaign Expenditures for State House Races
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Total Campaign Spending for State House)</td>
<td>0.7805</td>
<td>0.6675</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(4.67)</td>
<td>(5.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (State Expenditures)</td>
<td>...</td>
<td>...</td>
<td>0.000619</td>
<td>0.000726</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.08)</td>
<td>(7.39)</td>
</tr>
<tr>
<td>Per Capita State Expenditures</td>
<td>1.6E-5</td>
<td>6.81E-5</td>
<td>2.06E-5</td>
<td>4.69E-5</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(1.94)</td>
<td>(0.34)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>-0.1540(1.06)</td>
<td>-0.1278(0.78)</td>
<td>-0.3012(1.28)</td>
<td>-0.3136(1.48)</td>
</tr>
<tr>
<td>Term Limits</td>
<td>0.1568</td>
<td>-0.4175</td>
<td>0.1730</td>
<td>0.6283</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(1.14)</td>
<td>(0.26)</td>
<td>(1.44)</td>
</tr>
<tr>
<td>Abs % Difference in Control of State House</td>
<td>...</td>
<td>-0.00155</td>
<td>...</td>
<td>-0.00198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Number of Candidates Running for the State House</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>6.0E-8</td>
<td>3.9E-8</td>
<td>5.1E-8</td>
<td>9.1E-9</td>
</tr>
<tr>
<td></td>
<td>(3.69)</td>
<td>(2.93)</td>
<td>(3.31)</td>
<td>(1.06)</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Ln (Total Campaign Spending for State House)</th>
<th>(Total Campaign Spending for State House)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td></td>
</tr>
<tr>
<td>House General Election Variables</td>
<td></td>
</tr>
<tr>
<td>Number of Seats Up for Election</td>
<td>-0.0027 (0.01)</td>
</tr>
<tr>
<td>%Seats with No Challenger</td>
<td>0.1292 (0.16)</td>
</tr>
<tr>
<td>%Seats with No Incumbent</td>
<td>-0.5306 (0.60)</td>
</tr>
<tr>
<td>%Seats with Multiple Inc.</td>
<td>-4.4966 (0.94)</td>
</tr>
<tr>
<td>%Seats Won by between 0 and 5% General</td>
<td>5.092 (3.82)</td>
</tr>
<tr>
<td>%Seats Won by between 5 and 10% General</td>
<td>1.8177 (1.43)</td>
</tr>
<tr>
<td>%Seats Won by between 10 and 15% General</td>
<td>1.4806 (1.00)</td>
</tr>
<tr>
<td>%Seats Won by between 15 and 20% General</td>
<td>-0.3688 (0.29)</td>
</tr>
</tbody>
</table>

60
<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>Dependent Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln (Total Campaign Spending for State House)</td>
</tr>
<tr>
<td>Republican House Primary Variables</td>
<td>(Total Campaign Spending for State House)/Population</td>
</tr>
<tr>
<td>R%Seats with NoChal</td>
<td>0.2806 (0.73)</td>
</tr>
<tr>
<td>R%Seats with NoInc</td>
<td>1.5323 (3.04)</td>
</tr>
<tr>
<td>R%Seats with Multi Inc</td>
<td>-0.4879 (0.74)</td>
</tr>
<tr>
<td>R%Seats Won by between 0 and 5% Primary</td>
<td>-1.5118 (0.23)</td>
</tr>
<tr>
<td>R%Seats Won by between 5 and 10% Primary</td>
<td>-0.0020 (0.00)</td>
</tr>
<tr>
<td>R%Seats Won by between 10 and 15% Primary</td>
<td>2.9803 (1.17)</td>
</tr>
<tr>
<td>R%Seats Won by between 15 and 20% Primary</td>
<td>-2.4726 (0.90)</td>
</tr>
<tr>
<td>R%Seats Won by between 15 and 20% Primary</td>
<td>-4.2963 (1.88)</td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Democratic House Primary Variables</td>
<td></td>
</tr>
<tr>
<td>Dem. Prim. Candidates/Seats</td>
<td>-0.5048</td>
</tr>
<tr>
<td></td>
<td>(1.32)</td>
</tr>
<tr>
<td>D%Seats with No Chal.</td>
<td>-1.0294</td>
</tr>
<tr>
<td></td>
<td>(2.06)</td>
</tr>
<tr>
<td>D%Seats with No Inc</td>
<td>1.3720</td>
</tr>
<tr>
<td></td>
<td>(1.72)</td>
</tr>
<tr>
<td>D%Seats with Multiple Inc</td>
<td>-1.1947</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
</tr>
<tr>
<td>D%Seats Won by between 0 and 5% Primary</td>
<td>1.4223</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
</tr>
<tr>
<td>D%Seats Won by between 5 and 10% - Primary</td>
<td>-3.5151</td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
</tr>
<tr>
<td>D%Seats Won by between 10 and 15% - Primary</td>
<td>1.7311</td>
</tr>
<tr>
<td></td>
<td>(0.66)</td>
</tr>
<tr>
<td>D%Seats Won by between 15 and 20% - Primary</td>
<td>2.9682</td>
</tr>
<tr>
<td></td>
<td>(1.03)</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Ln (Total Campaign Spending for State House)</th>
<th>(Total Campaign Spending for State House)/Population</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.4952</td>
<td>2.9215</td>
<td>-5.0339</td>
<td>-2.067</td>
</tr>
<tr>
<td>Adj-R^2</td>
<td>0.8921</td>
<td>0.9317</td>
<td>0.8847</td>
<td>0.9555</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.1997</td>
<td>0.2811</td>
<td>0.3231</td>
<td>0.3624</td>
</tr>
<tr>
<td>Observations</td>
<td>69.0</td>
<td>69.0</td>
<td>69.0</td>
<td>69.0</td>
</tr>
</tbody>
</table>
Table 4: Explaining Total Campaign Expenditures for State Senate Races
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>Ln (Total Campaign Spending for State Senate)</th>
<th>(Total Campaign Spending for State Senate)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (State Expenditures)</td>
<td>0.5882 (2.71)</td>
<td>. . .</td>
</tr>
<tr>
<td>Per Capita State Expenditures</td>
<td>. . .</td>
<td>0.000367 (3.71)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>4.7 E-5 (1.39)</td>
<td>2.38 E-5 (1.04)</td>
</tr>
<tr>
<td>Term Limits</td>
<td>-0.3639 (1.51)</td>
<td>-0.3675 (2.10)</td>
</tr>
<tr>
<td>Abs % Difference in Control of State Senate</td>
<td>-0.1183 (0.21)</td>
<td>-0.5589 (1.55)</td>
</tr>
<tr>
<td>Total Number of Candidates Running for the State Senate</td>
<td>. . .</td>
<td>0.0106 (2.50)</td>
</tr>
<tr>
<td>Population</td>
<td>4.6 E-8 (1.87)</td>
<td>4.4 E-9 (1.83)</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senate General Election Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Seats Up for Election</td>
<td>0.01336</td>
<td>...</td>
<td>0.0067</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.53)</td>
<td></td>
<td>(1.16)</td>
<td></td>
</tr>
<tr>
<td>%Seats with No Challenger</td>
<td>0.6806</td>
<td>...</td>
<td>0.4751</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.82)</td>
<td></td>
<td>(2.76)</td>
<td></td>
</tr>
<tr>
<td>%Seats with No Incumbent</td>
<td>-0.40(0.58)93</td>
<td>...</td>
<td>0.5335</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.08)</td>
<td></td>
</tr>
<tr>
<td>%Seats with Multiple Inc.</td>
<td>-0.8345</td>
<td>...</td>
<td>-2.020</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td></td>
<td>(1.79)</td>
<td></td>
</tr>
<tr>
<td>%Seats Won by between 0 and 5% General</td>
<td>1.5722</td>
<td>...</td>
<td>0.3312</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.47)</td>
<td></td>
<td>(0.42)</td>
<td></td>
</tr>
<tr>
<td>%Seats Won by between 5 and 10% General</td>
<td>0.5732</td>
<td>...</td>
<td>0.3317</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td></td>
<td>(0.52)</td>
<td></td>
</tr>
<tr>
<td>%Seats Won by between 10 and 15% General</td>
<td>0.7331</td>
<td>...</td>
<td>1.045</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td></td>
<td>(1.46)</td>
<td></td>
</tr>
<tr>
<td>%Seats Won by between 15 and 20% General</td>
<td>0.6956</td>
<td>...</td>
<td>-1.041</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td></td>
<td>(1.23)</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>Ln (Total Campaign Spending for State Senate)</th>
<th>(Total Campaign Spending for State Senate)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4)</td>
<td></td>
</tr>
</tbody>
</table>

Republican Senate Primary Variables

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep. Prim. Candidates/Seats</td>
<td>-0.1040</td>
<td>...</td>
<td>-0.813</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td></td>
<td>(2.99)</td>
<td></td>
</tr>
<tr>
<td>R%Seats with NoChal</td>
<td>-0.1660</td>
<td>...</td>
<td>0.3281</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td></td>
<td>(0.86)</td>
<td></td>
</tr>
<tr>
<td>R%Seats with NoInc</td>
<td>1.1482</td>
<td>...</td>
<td>1.2455</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td></td>
<td>(2.42)</td>
<td></td>
</tr>
<tr>
<td>R%Seats with MultiInc</td>
<td>-7.1267</td>
<td>...</td>
<td>-6.5598</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.34)</td>
<td></td>
<td>(3.09)</td>
<td></td>
</tr>
<tr>
<td>R%Seats Won by between 0 and 5% Primary</td>
<td>1.5012</td>
<td>...</td>
<td>-0.6295</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td></td>
<td>(0.45)</td>
<td></td>
</tr>
<tr>
<td>R%Seats Won by between 5 and 10% Primary</td>
<td>0.5491</td>
<td>...</td>
<td>0.2066</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td></td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>R%Seats Won by between 10 and 15% Primary</td>
<td>-0.9974</td>
<td>...</td>
<td>-1.6711</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td></td>
<td>(1.38)</td>
<td></td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>R % Seats Won by between 15 and 20% Primary</td>
<td>0.5868</td>
<td>...</td>
<td>3.4809</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td></td>
<td>(1.99)</td>
<td></td>
</tr>
<tr>
<td>Democratic Primary Senate Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dem. Prim. Candidates/Seats</td>
<td>0.555</td>
<td>...</td>
<td>0.5346</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.54)</td>
<td></td>
<td>(2.60)</td>
<td></td>
</tr>
<tr>
<td>D % Seats with No Chal.</td>
<td>-0.191</td>
<td>...</td>
<td>0.1785</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td></td>
<td>(0.44)</td>
<td></td>
</tr>
<tr>
<td>D % Seats with No Inc</td>
<td>1.189</td>
<td>...</td>
<td>1.7285</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.32)</td>
<td></td>
<td>(3.52)</td>
<td></td>
</tr>
<tr>
<td>D % Seats with Multiple Inc</td>
<td>0.004</td>
<td>...</td>
<td>3.7506</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
<td>(2.00)</td>
<td></td>
</tr>
<tr>
<td>D % Seats Won by between 0 and 5% Primary</td>
<td>-0.311</td>
<td>...</td>
<td>-2.2827</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td></td>
<td>(1.32)</td>
<td></td>
</tr>
<tr>
<td>D % Seats Won by between 5 and 10% Primary</td>
<td>-1.711</td>
<td>...</td>
<td>-2.6399</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
<td></td>
<td>(2.06)</td>
<td></td>
</tr>
<tr>
<td>D % Seats Won by between 10 and 15% Primary</td>
<td>-1.405</td>
<td>...</td>
<td>0.1175</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
<td></td>
<td>(0.11)</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>Ln (Total Campaign Spending for State Senate)</th>
<th>(Total Campaign Spending for State Senate)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>D % Seats Won by between 15 and 20% Primary</td>
<td>0.248</td>
<td>. .</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.38)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-3.1736</td>
<td>-7.1973</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
<td>(2.31)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.8712</td>
<td>0.8941</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.2847</td>
<td>0.3482</td>
</tr>
<tr>
<td>Observations</td>
<td>61.0</td>
<td>61.0</td>
</tr>
</tbody>
</table>
Table 5: Explaining Total Campaign Expenditures for Gubernatorial Races
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>Ln (Total Campaign Spending for Governorship)</th>
<th>Ln (Total Campaign Spending for Governorship)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (State Expenditures)</td>
<td>0.6020 (5.418)</td>
<td>. . .</td>
</tr>
<tr>
<td>Per Capita State Expenditures</td>
<td>. . .</td>
<td>0.00157 (5.091)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>0.000029 (1.214)</td>
<td>2.24E-6 (0.086)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.54E-5 (0.242)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.0000157 (0.246)</td>
</tr>
<tr>
<td>No Incumbent Running</td>
<td>. . .</td>
<td>0.3877 (3.761)</td>
</tr>
<tr>
<td>Maximum Number of Years</td>
<td>0.02625 (2.035)</td>
<td>0.0223 (1.585)</td>
</tr>
<tr>
<td>Governor allowed to Serve</td>
<td></td>
<td>0.1027 (2.709)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0961 (2.653)</td>
</tr>
<tr>
<td>Length of Term</td>
<td>0.01407 (0.163)</td>
<td>0.0677 (0.733)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4845 (2.209)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4527 (2.150)</td>
</tr>
<tr>
<td>Split Control of State</td>
<td>0.0366 (0.286)</td>
<td>-0.1752 (1.269)</td>
</tr>
<tr>
<td>Legislature</td>
<td></td>
<td>-0.2797 (0.773)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.6399 (1.842)</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Total Campaign Spending for Governorship)</td>
<td>0.6580</td>
<td>...</td>
<td>1.1859</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.601)</td>
<td></td>
<td>(1.660)</td>
<td></td>
</tr>
<tr>
<td>(Total Campaign Spending for Governorship)/Population</td>
<td>-0.2878</td>
<td>...</td>
<td>-0.8142</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.100)</td>
<td></td>
<td>(1.123)</td>
<td></td>
</tr>
<tr>
<td>Abs % Difference in Control of State Senate</td>
<td>...</td>
<td>0.1260</td>
<td>...</td>
<td>0.2371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.664)</td>
<td></td>
<td>(2.746)</td>
</tr>
<tr>
<td>Total Number of Major Party Candidates Running for the Governorship</td>
<td>3.04 E - 8</td>
<td>1.43 E - 8</td>
<td>-4.20 E - 8</td>
<td>-3.79 E - 8</td>
</tr>
<tr>
<td></td>
<td>(1.681)</td>
<td>(0.722)</td>
<td>(1.447)</td>
<td>(1.345)</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent in General Election</td>
<td>0.2360</td>
<td>...</td>
<td>-0.0678</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.752)</td>
<td></td>
<td>(0.076)</td>
<td></td>
</tr>
<tr>
<td>Winning Margin in General Election Between Top Two Candidates</td>
<td>-0.0168</td>
<td>...</td>
<td>-0.0223</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(4.664)</td>
<td></td>
<td>(2.202)</td>
<td></td>
</tr>
<tr>
<td>Number of Candidates with more than 5 percent of Vote</td>
<td>0.0058</td>
<td>...</td>
<td>0.0992</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td></td>
<td>(0.249)</td>
<td></td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Republican Gubernatorial Primary Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republican Incumbent</td>
<td>-0.3238</td>
<td>. . .</td>
<td>-0.2561</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(0.979)</td>
<td></td>
<td>(0.273)</td>
<td></td>
</tr>
<tr>
<td>No Challenger</td>
<td>0.0004</td>
<td>. . .</td>
<td>-0.0459</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td>(0.111)</td>
<td></td>
</tr>
<tr>
<td>Winning Margin in General Election Between Top Two Candidates</td>
<td>-0.0046</td>
<td>. . .</td>
<td>-0.0067</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(2.250)</td>
<td></td>
<td>(1.150)</td>
<td></td>
</tr>
<tr>
<td>Number of Candidates with more than 5 percent of Vote</td>
<td>-0.0582</td>
<td>. . .</td>
<td>-0.1510</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(0.937)</td>
<td></td>
<td>(0.853)</td>
<td></td>
</tr>
<tr>
<td>Democratic Gubernatorial Primary Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democratic Incumbent</td>
<td>-0.4797</td>
<td>. . .</td>
<td>-0.3414</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(1.598)</td>
<td></td>
<td>(0.402)</td>
<td></td>
</tr>
<tr>
<td>No Challenger</td>
<td>0.2483</td>
<td>. . .</td>
<td>0.6483</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(1.484)</td>
<td></td>
<td>(1.343)</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Total Campaign Spending for Governorship)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Total Campaign Spending for Governorship)/Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winning Margin in General Election Between Top Two Candidates</td>
<td>-0.005</td>
<td>. . .</td>
<td>-0.0079</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(2.230)</td>
<td>(1.249)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Candidates with more than 5 percent of Vote</td>
<td>0.0967</td>
<td>. . .</td>
<td>0.3725</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(1.467)</td>
<td>(2.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.5479</td>
<td>-2.4545</td>
<td>-0.6881</td>
<td>-1.4676</td>
</tr>
<tr>
<td></td>
<td>(0.676)</td>
<td>(1.025)</td>
<td>(0.342)</td>
<td>(0.897)</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.7837</td>
<td>0.7114</td>
<td>0.6877</td>
<td>0.6668</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.4984</td>
<td>0.5757</td>
<td>1.4066</td>
<td>1.4527</td>
</tr>
<tr>
<td>Observations</td>
<td>164.0</td>
<td>164.0</td>
<td>164.0</td>
<td>164.0</td>
</tr>
</tbody>
</table>
Table 6: To What Extent are Government Expenditures Proxying for Past Campaign Expenditures?
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>House</th>
<th>State</th>
<th>Governor</th>
<th>House</th>
<th>State</th>
<th>Governor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (State Expenditures)</td>
<td>0.5530</td>
<td>0.6737</td>
<td>0.7870</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.852)</td>
<td>(3.750)</td>
<td>(7.357)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged Ln (Campaign Expenditures)</td>
<td>0.6795</td>
<td>0.4696</td>
<td>0.4225</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(4.827)</td>
<td>(3.588)</td>
<td>(6.782)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Expenditures</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0.00068</td>
<td>0.00026</td>
<td>0.001296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5.465)</td>
<td>(1.962)</td>
<td>(7.897)</td>
</tr>
<tr>
<td>Lagged Per Capita Campaign Expenditures</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0.0650</td>
<td>0.2036</td>
<td>0.31497</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.530)</td>
<td>(1.378)</td>
<td>(4.956)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>5.4E-5</td>
<td>2.06E-6</td>
<td>-3.7E-5</td>
<td>9.2E-5</td>
<td>-3.42E-6</td>
<td>-1.03E-4</td>
</tr>
<tr>
<td></td>
<td>(1.451)</td>
<td>(0.066)</td>
<td>(1.571)</td>
<td>(1.580)</td>
<td>(0.246)</td>
<td>(1.877)</td>
</tr>
<tr>
<td>No Incumbent Running</td>
<td>...</td>
<td>...</td>
<td>0.0373</td>
<td>...</td>
<td>...</td>
<td>0.1697</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.326)</td>
<td></td>
<td></td>
<td>(0.646)</td>
</tr>
<tr>
<td>Term Limits</td>
<td>-0.0752</td>
<td>-0.3527</td>
<td>...</td>
<td>-0.2524</td>
<td>-0.3277</td>
<td>...</td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>House</td>
<td>State</td>
<td>Governor</td>
<td>House</td>
<td>State</td>
<td>Governor</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Maximum Number of Years Governor allowed to Serve</td>
<td>(1.872)</td>
<td>(2.335)</td>
<td>(1.559)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of Term</td>
<td>(1.667)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs % Difference in Control of State House</td>
<td>0.0561</td>
<td></td>
<td>0.7169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td></td>
<td>(1.559)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs % Difference in Control of State Senate</td>
<td>-0.0788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.2521</td>
</tr>
<tr>
<td></td>
<td>(0.186)</td>
<td></td>
<td>(0.572)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split Control of State Legislature</td>
<td>-0.1772</td>
<td></td>
<td></td>
<td>-0.3497</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.460)</td>
<td></td>
<td>(1.127)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Number of Major Party Candidates Running</td>
<td>0.0005</td>
<td>0.0054</td>
<td>0.09246</td>
<td>-0.00286</td>
<td>0.0017</td>
<td>0.3130</td>
</tr>
<tr>
<td></td>
<td>(0.459)</td>
<td>(2.027)</td>
<td>(2.749)</td>
<td>(1.952)</td>
<td>(0.685)</td>
<td>(3.792)</td>
</tr>
<tr>
<td>Population</td>
<td>-2.83 E-10</td>
<td>1.65 E-8</td>
<td>1.81 E-8</td>
<td>-4.37 E-9</td>
<td>2.36 E-10</td>
<td>-2.19 E-8</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(1.131)</td>
<td>(1.051)</td>
<td>(1.447)</td>
<td>(0.030)</td>
<td>(0.893)</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.0831</td>
<td>2.4545</td>
<td>1.5286</td>
<td>3.0850</td>
<td>1.282</td>
<td>1.381</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Total Campaign Spending) for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House</td>
<td>(0.569)</td>
<td>(1.025)</td>
<td>(0.688)</td>
<td>(2.087)</td>
<td>(0.162)</td>
<td>(0.754)</td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Total Campaign Spending)/Population for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj-R² =</td>
<td>0.9539</td>
<td>0.9309</td>
<td>0.8319</td>
<td>0.9578</td>
<td>0.9320</td>
<td>0.7599</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.2380</td>
<td>0.2928</td>
<td>0.4362</td>
<td>0.3668</td>
<td>0.2991</td>
<td>1.0726</td>
</tr>
<tr>
<td>Observations</td>
<td>61.0</td>
<td>53.0</td>
<td>118.0</td>
<td>61.0</td>
<td>53.0</td>
<td>118.0</td>
</tr>
</tbody>
</table>
Table 7: Do Lagged Campaign Expenditures Explain Higher Government Expenditures?
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(Total Government Spending)</th>
<th>(Total Government Spending)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>House</td>
<td>Senate</td>
</tr>
<tr>
<td>Lagged Ln (State Expenditures)</td>
<td>0.9300</td>
<td>0.8688</td>
</tr>
<tr>
<td></td>
<td>(21.94)</td>
<td>(15.92)</td>
</tr>
<tr>
<td>Lagged Ln (Campaign Expenditures)</td>
<td>-0.0877</td>
<td>0.5291</td>
</tr>
<tr>
<td></td>
<td>(20.32)</td>
<td>(2.16)</td>
</tr>
<tr>
<td>Lagged Per Capita State Expenditures</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(9.58)</td>
<td>(6.18)</td>
</tr>
<tr>
<td>Lagged Per Capita Campaign Expenditures</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td></td>
<td>(3.39)</td>
<td>(1.76)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>5.4 E-5</td>
<td>1.70 E-4</td>
</tr>
<tr>
<td></td>
<td>(4.21)</td>
<td>(1.83)</td>
</tr>
<tr>
<td>Population</td>
<td>1.2 E-8</td>
<td>-5.7 E-8</td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>House</th>
<th>Senate</th>
<th>Governor</th>
<th>House</th>
<th>Senate</th>
<th>Governor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (Total Government Spending) for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Total Government Spending)/Population for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.2351</td>
<td>-8.1352</td>
<td>0.2833</td>
<td>-1361.69</td>
<td>-1137.46</td>
<td>68.3759</td>
</tr>
<tr>
<td></td>
<td>(2.08)</td>
<td>(2.36)</td>
<td>(0.649)</td>
<td>(1.70)</td>
<td>(1.85)</td>
<td>(0.293)</td>
</tr>
<tr>
<td>Adj-R^2</td>
<td>0.9810</td>
<td>0.9358</td>
<td>0.9907</td>
<td>0.9687</td>
<td>0.9696</td>
<td>0.9604</td>
</tr>
<tr>
<td>Observations</td>
<td>75.0</td>
<td>64.0</td>
<td>128.0</td>
<td>75.0</td>
<td>64.0</td>
<td>128.0</td>
</tr>
</tbody>
</table>

Observations = 75.0 64.0 128.0
Table 8: Rerunning the Regressions Using Differences.
(Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>House</th>
<th>Senate</th>
<th>Governor</th>
<th>House</th>
<th>Senate</th>
<th>Governor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in (Total Campaign Spending)/ Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Change in Per Capita State Expenditures</td>
<td>0.00096</td>
<td>0.00043</td>
<td>0.001004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.389)</td>
<td>(2.861)</td>
<td>(4.040)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Ln (State Expenditures)</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
<td>0.7698</td>
<td>0.9096</td>
<td>0.9385</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.822)</td>
<td>(1.864)</td>
<td>(2.064)</td>
</tr>
<tr>
<td>Change in Per Capita Income</td>
<td>-4.05 E-6</td>
<td>0.000018</td>
<td>2.4 E-5</td>
<td>6.82 E-6</td>
<td>0.000028</td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.533)</td>
<td>(0.256)</td>
<td>(0.417)</td>
<td>(1.047)</td>
<td>(0.244)</td>
</tr>
<tr>
<td>Change in the Total Number of Candidates</td>
<td>0.0017</td>
<td>0.0083</td>
<td>0.00471</td>
<td>0.00276</td>
<td>0.0112</td>
<td>0.0227</td>
</tr>
<tr>
<td></td>
<td>(1.611)</td>
<td>(1.989)</td>
<td>(3.595)</td>
<td>(4.103)</td>
<td>(3.270)</td>
<td>(3.940)</td>
</tr>
<tr>
<td>Change in Population</td>
<td>-2.21 E-7</td>
<td>-9.04 E-8</td>
<td>6.85 E-9</td>
<td>-1.68 E-7</td>
<td>-1.53 E-7</td>
<td>-1.63 E-9</td>
</tr>
<tr>
<td></td>
<td>(1.483)</td>
<td>(0.554)</td>
<td>(0.170)</td>
<td>(2.076)</td>
<td>(1.232)</td>
<td>(0.754)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.4669</td>
<td>-0.1015</td>
<td>-0.5867</td>
<td>-0.1956</td>
<td>0.0325</td>
<td>-0.3519</td>
</tr>
<tr>
<td></td>
<td>(1.824)</td>
<td>(0.477)</td>
<td>(0.669)</td>
<td>(1.383)</td>
<td>(0.181)</td>
<td>(0.941)</td>
</tr>
<tr>
<td>Adj-R² =</td>
<td>0.5759</td>
<td>0.2230</td>
<td>0.1513</td>
<td>0.3089</td>
<td>0.2839</td>
<td>0.0603</td>
</tr>
<tr>
<td>Observations =</td>
<td>58.0</td>
<td>50.0</td>
<td>121.0</td>
<td>58.0</td>
<td>50.0</td>
<td>121.0</td>
</tr>
</tbody>
</table>
Table 9: Explaining Total Campaign Expenditures by Type of State Spending:
Expenditures for All Candidates Running for the State Houses

(Absolute t-statistics are in parentheses. Year and regional dummy variables are not reported. Specifications 1 and 3 do not show the coefficients for the vector of variables that control for the number of candidates and the closeness of races in the general and primary elections. This is the same set of control variables used in specifications 1 and 3 in Table 3. Specifications 2 and 4 use the same set of control variables that were employed in specifications 2 and 4 in Table 3. Again the results for these other variables are not reported.)

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (State Education Expenditures)</td>
<td>0.7155</td>
<td>0.4754</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.16)</td>
<td>(2.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (State Highway Expenditures)</td>
<td>0.0758</td>
<td>-0.4285</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(1.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (State Welfare Expenditures)</td>
<td>-0.1649</td>
<td>0.2625</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td>(1.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (State Health Expenditures)</td>
<td>-0.0027</td>
<td>0.1375</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Education Expenditures</td>
<td>...</td>
<td>...</td>
<td>0.0014</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.96)</td>
<td>(2.91)</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td>Ln (Total Campaign Spending for State House)</td>
<td>(Total Campaign Spending for State House)/Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Highway Expenditures</td>
<td>. . .</td>
<td>. . .</td>
<td>0.00488</td>
<td>0.0033</td>
</tr>
<tr>
<td>Per Capita State Welfare Expenditures</td>
<td>. . .</td>
<td>. . .</td>
<td>-0.0023</td>
<td>-0.00011</td>
</tr>
<tr>
<td>Per Capita State Health Expenditures</td>
<td>. . .</td>
<td>. . .</td>
<td>0.0000134</td>
<td>0.00028</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.4209</td>
<td>4.070</td>
<td>-6.9511</td>
<td>-2.3179</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.8823</td>
<td>0.8117</td>
<td>0.8289</td>
<td>0.8128</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.2270</td>
<td>0.2757</td>
<td>0.4733</td>
<td>0.5196</td>
</tr>
<tr>
<td>Observations</td>
<td>69.0</td>
<td>69.0</td>
<td>69.0</td>
<td>69.0</td>
</tr>
</tbody>
</table>
Table 10: Explaining Total Campaign Expenditures by Type of State Spending:

Expenditures for All Candidates Running for the State Senators

(Absolute t-statistics are in parentheses. Year and regional dummy variables are not reported. Specifications 1 and 3 do not show the coefficients for the vector of variables that control for the number of candidates and the closeness of races in the general and primary elections. This is the same set of control variables used in specifications 1 and 3 in Table 4. Specifications 2 and 4 use the same set of control variables that were employed in specifications 2 and 4 in Table 4. Again the results for these other variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln (State Education Expenditures)</td>
<td>-0.2076 (0.49)</td>
<td>-0.4309 (1.32)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ln (State Highway Expenditures)</td>
<td>0.8878 (1.67)</td>
<td>1.1276 (2.75)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ln (State Welfare Expenditures)</td>
<td>-0.1202 (0.39)</td>
<td>0.0322 (0.13)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ln (State Health Expenditures)</td>
<td>0.2419 (1.69)</td>
<td>0.2316 (1.83)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Per Capita State Education Expenditures</td>
<td>...</td>
<td>...</td>
<td>-0.0001 (0.30)</td>
<td>-1.01 E-4 (0.43)</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ln (Total Campaign Spending for State House)</td>
<td>.</td>
<td>.</td>
<td>0.00452</td>
<td>0.003597</td>
</tr>
<tr>
<td>Per Capita State Highway Expenditures</td>
<td>.</td>
<td>.</td>
<td>(4.19)</td>
<td>(4.85)</td>
</tr>
<tr>
<td>Per Capita State Welfare Expenditures</td>
<td>.</td>
<td>.</td>
<td>0.00114</td>
<td>0.00123</td>
</tr>
<tr>
<td>Per Capita State Health Expenditures</td>
<td>.</td>
<td>.</td>
<td>0.00028</td>
<td>0.00021</td>
</tr>
<tr>
<td>Intercept</td>
<td>5.9357</td>
<td>5.7448</td>
<td>-1.8378</td>
<td>-1.5272</td>
</tr>
<tr>
<td></td>
<td>(2.90)</td>
<td>(3.76)</td>
<td>(2.00)</td>
<td>(3.31)</td>
</tr>
<tr>
<td>Adj-R^2</td>
<td>0.8660</td>
<td>0.8142</td>
<td>0.8767</td>
<td>0.8426</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.2946</td>
<td>0.3519</td>
<td>0.2254</td>
<td>0.2864</td>
</tr>
<tr>
<td>Observations</td>
<td>61.0</td>
<td>61.0</td>
<td>61.0</td>
<td>61.0</td>
</tr>
</tbody>
</table>
Table 11: Explaining Total Campaign Expenditures by Type of State Spending:
Expenditures for All Candidates Running for the Governorships
(Absolute t-statistics are in parentheses. Year and regional dummy variables are not reported.
Specifications 1 and 3 do not show the coefficients for the vector of variables that control for the number of candidates and the closeness of races in the general and primary elections. This is the same set of control variables used in specifications 1 and 3 in Table 5. Specifications 2 and 4 use the same set of control variables that were employed in specifications 2 and 4 in Table 5. Again the results for these other variables are not reported.)

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Ln (Total Campaign Spending for State House)</th>
<th>(Total Campaign Spending for Governorship)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ln (State Education Expenditures)</td>
<td>0.5126</td>
<td>0.5812</td>
</tr>
<tr>
<td>(State Education Expenditures)</td>
<td>(3.89)</td>
<td>(4.67)</td>
</tr>
<tr>
<td>Ln (State Highway Expenditures)</td>
<td>0.2343</td>
<td>0.2851</td>
</tr>
<tr>
<td>(State Highway Expenditures)</td>
<td>(1.97)</td>
<td>(2.75)</td>
</tr>
<tr>
<td>Ln (State Welfare Expenditures)</td>
<td>-0.0032</td>
<td>-0.0422</td>
</tr>
<tr>
<td>(State Welfare Expenditures)</td>
<td>(0.39)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>Ln (State Health Expenditures)</td>
<td>0.0072</td>
<td>0.0060</td>
</tr>
<tr>
<td>(State Health Expenditures)</td>
<td>(0.55)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>Per Capita State Education Expenditures</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(Per Capita State Education Expenditures)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>Ln (Total Campaign Spending for State House)</th>
<th>(Total Campaign Spending for Governorship)/Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Highway Expenditures</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Welfare Expenditures</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Capita State Health Expenditures</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.9357</td>
<td>3.7448</td>
</tr>
<tr>
<td></td>
<td>(2.88)</td>
<td>(2.76)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.7915</td>
<td>0.7242</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td>(0.67)</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>0.4946</td>
<td>0.5519</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td>(0.91)</td>
</tr>
<tr>
<td>Observations</td>
<td>164.0</td>
<td>164.0</td>
</tr>
</tbody>
</table>

84
Table 12: Explaining The Total Number of Candidates Running for State House, State Senate, and Gubernatorial Offices

(Dependent variable is the total number of candidates by type of election, Absolute t-statistics are in parentheses, year and regional dummy variables are not reported.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>State Senate</th>
<th>State House</th>
<th>Governorships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita State Expenditures</td>
<td>0.0091</td>
<td>0.0123</td>
<td>-0.00018</td>
</tr>
<tr>
<td></td>
<td>(3.16)</td>
<td>(1.39)</td>
<td>(0.641)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>-0.00129</td>
<td>-0.0051</td>
<td>4.9 E-5</td>
</tr>
<tr>
<td></td>
<td>(1.52)</td>
<td>(1.20)</td>
<td>(0.786)</td>
</tr>
<tr>
<td>Number of Seats Up for Election</td>
<td>2.266</td>
<td>2.034</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(12.17)</td>
<td>(5.83)</td>
<td></td>
</tr>
<tr>
<td>%Seats with No Incumbent Running in</td>
<td>-8.1852</td>
<td>60.88</td>
<td>...</td>
</tr>
<tr>
<td>General</td>
<td>(0.51)</td>
<td>(0.95)</td>
<td></td>
</tr>
<tr>
<td>%Seats with No Incumbent Running in</td>
<td>49.21</td>
<td>135.02</td>
<td>...</td>
</tr>
<tr>
<td>Rep. Primary</td>
<td>(3.89)</td>
<td>(2.94)</td>
<td></td>
</tr>
<tr>
<td>%Seats with No Incumbent Running in</td>
<td>60.56</td>
<td>115.93</td>
<td>...</td>
</tr>
<tr>
<td>Dem. Primary</td>
<td>(5.40)</td>
<td>(1.91)</td>
<td></td>
</tr>
<tr>
<td>No Incumbent Running in General</td>
<td>...</td>
<td>...</td>
<td>-0.7466</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.873)</td>
</tr>
<tr>
<td>No Incumbent Running in Republican</td>
<td>...</td>
<td>...</td>
<td>1.3451</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td>(1.534)</td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>State Senate</td>
<td>State House</td>
<td>Governorships</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>No Incumbent Running in Democratic Primary</td>
<td>. . .</td>
<td>. . .</td>
<td>1.4268</td>
</tr>
<tr>
<td>Term Limits</td>
<td>4.26 (1.71)</td>
<td>42.20 (2.29)</td>
<td>0.4092</td>
</tr>
<tr>
<td>Abs % Difference in Control of State Senate</td>
<td>-0.1180 (0.01)</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Abs % Difference in Control of State House</td>
<td>. . . (1.58)</td>
<td>-69.66 . . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Split Control of State Legislature</td>
<td>. . .</td>
<td>. . .</td>
<td>-0.1312 (0.377)</td>
</tr>
<tr>
<td>Population</td>
<td>5 E-7 (2.12)</td>
<td>2.2 E-6 (2.60)</td>
<td>2.66 E-8 (1.017)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-58.947 (3.11)</td>
<td>-49.59 (0.47)</td>
<td>5.9755 (4.142)</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.8118</td>
<td>0.7972</td>
<td>0.2962</td>
</tr>
<tr>
<td>Root Mean Sq Error</td>
<td>10.031</td>
<td>10.9760</td>
<td>1.4257</td>
</tr>
<tr>
<td>Observations</td>
<td>61.0</td>
<td>69.0</td>
<td>164.0</td>
</tr>
</tbody>
</table>
Table 13: Explaining Congressional Tenure as a Function of Federal Government Expenditures

(Dependent variable is the number of terms that a new congressman entering during a given congress will serve. The number of terms served is calculated using the ten terms following the term when a congressman enters office. Cochrane-Orcutt regressions were used because of the presence of serial collinearity. Absolute t-statistics are in parentheses.)

<table>
<thead>
<tr>
<th>Exogenous Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Federal Government Expenditures</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
<td>0.000089</td>
<td>0.00014</td>
<td>6.84 e-6</td>
</tr>
<tr>
<td>Ln(Federal Government Expenditures)</td>
<td>0.1632</td>
<td>0.278</td>
<td>-.0539</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Male Life Expectancy</td>
<td>. . .</td>
<td>0.0337</td>
<td>0.2007</td>
<td>. . .</td>
<td>0.0246</td>
<td>0.1934</td>
</tr>
<tr>
<td>Days Congress is in Session during term</td>
<td>-.00031</td>
<td>-.0024</td>
<td>-.0013</td>
<td>-.0027</td>
<td>-.00196</td>
<td>-.00139</td>
</tr>
<tr>
<td>Real Congressional Salary in 1985 dollars</td>
<td>-2.28 e-6</td>
<td>-4.69 E-6</td>
<td>. . .</td>
<td>-5.81 e-6</td>
<td>-8.49 e-6</td>
<td>. . .</td>
</tr>
<tr>
<td>Ratio of Congressional Salary to Law Partner's Salary</td>
<td>. . .</td>
<td>. . .</td>
<td>-.0307</td>
<td>. . .</td>
<td>. . .</td>
<td>-0.02111</td>
</tr>
<tr>
<td>Time Trend</td>
<td>0.0718</td>
<td>0.06857</td>
<td>0.0280</td>
<td>0.0873</td>
<td>0.0899</td>
<td>0.02485</td>
</tr>
</tbody>
</table>

87
<table>
<thead>
<tr>
<th>Sample Means and Standard Deviations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Federal Government Expenditures</td>
<td>1308.68</td>
<td>1665.30</td>
<td>69.0</td>
</tr>
<tr>
<td>Ln(Federal Government Expenditures)</td>
<td>24.38</td>
<td>2.305</td>
<td>69.0</td>
</tr>
<tr>
<td>Male Life Expectancy</td>
<td>60.34</td>
<td>8.549</td>
<td>43.0</td>
</tr>
<tr>
<td>Days Congress is in Session during term</td>
<td>209.61</td>
<td>61.65</td>
<td>62.0</td>
</tr>
<tr>
<td>Real Congressional Salary in 1985 dollars</td>
<td>64,429.78</td>
<td>20,003.90</td>
<td>67.0</td>
</tr>
<tr>
<td>Ratio of Congressional Salary to Law Partner's Salary</td>
<td>1.389</td>
<td>0.2583</td>
<td>24.0</td>
</tr>
</tbody>
</table>