
Normative Principles for Evaluating
Free and Proprietary Software

Jonathan Zittraint

The production of most mass-market software can be grouped roughly according to free

and proprietary development models. These models differ greatly from one another, and their as-

sociated licenses tend to insist that new software inherit the characteristics of older software from

which it may be derived. Thus the success of one model or another can become self-perpetuating,

as older free software is incorporated into later free software and proprietary software is embedded

within successive proprietary versions. The competition between the two models is fierce, and the

battle between them is no longer simply confined to the market. Claims of improper use of proprie-

tary code within the free GNU/Linux operating system have resulted in multi-billion dollar litiga-

tion. This Essay explains the ways in which free and proprietary software are at odds, and offers a

framework by which to assess their value-a prerequisite to determining the extent to which the le-

gal system should take more than a passing, mechanical interest in the doctrinal claims now being

pressed against GNU/Linux specifically and free software generally.

INTRODUCTION

For the past twenty years, the modern landscape of information
technology has accommodated competing spheres of software produc-
tion. These spheres can be grouped roughly around two poles warring
for dominance in the field. On one side is proprietary software, which
typically provides cash-and-carry functionality for the end-user. Its
source code "recipe" is nearly always hidden from view as a technical
matter, and as a legal matter it cannot be used by independent pro-
grammers to develop new software without the rarely given permis-
sion of its unitary rights holder. On the other side is "free" software,
the recipes for which are open to public view and use. Some free soft-
ware is further "copylefted," that is, copyrighted for the purpose of in-
corporating license restrictions designed to ensure that anyone who
uses and releases the copylefted code as a component of new software
must also release that new software under copyleft's otherwise-
permissive terms.'

t Jack N. and Lillian R. Berkman Assistant Professor for Entrepreneurial Legal Studies,
Harvard Law School. I thank participants in this Colloquium and the Harvard Law School
Summer Research Program. Derek Bambauer, Tom Brown, Noah Eisenkraft.Terry Fisher. Jerry
Kang, Mark Lemley, Douglas Lichtman, Isaac Lidsky, John Palfrey. Mark Roe, Steven Shavell,
and Eugene Volokh for helpful discussions and criticisms, and Mary Bridges, Megan Kirk, and
Greg Skidmore for research assistance on this ongoing project.

I See Severine Dusollier, Open Source and Copyright: Authorship Reconsidered?. 26

265

The University of Chicago Law Review

The legal forms of proprietary and free software production can-
not coexist within a given piece of code. The proprietary form relies
on the existence and enforcement of prevailing copyright law. In con-
trast, copylefted code asserts a thus far legally untested license pegged
to copyright in order to establish the restriction that successor code
must be licensed in precisely the same way, namely with its source
code freely available. The incommensurability of free and proprietary
legal structures within a single piece of software is but one facet of a
fundamental philosophical divide between the structures' respective
hard-core adherents. Many who promote copylefted software do so
only as a second best to the politically unattainable eradication of
nearly all existing available proprietary rights in software. Sellers of
proprietary software, on the other hand, believe that the growing
popularity of copylefted software threatens both their individual busi-
ness models and the PC software industry generally-possibly leading
to an equilibrium in which later innovation is largely forestalled, since
no one can readily monopolize derivatives to popular free software to
recoup large investments in improving the original works.

The clash between models is currently unfolding most vividly
among developers of microcomputer operating systems. This is be-
cause there are wildly popular operating systems generated by both
models, some of which are functionally quite similar (such as the free
GNU/Linux on the one hand and various proprietary Unixes on the
other), others of which are largely incompatible and require path-
dependent commitments by consumers to one or the other (such as
the GNU/Linux on the one hand and the Microsoft Windows family
on the other). Such intense competition provides extra incentives for
one side to advance or fund claims of legal impropriety against the
other, and the stakes in competition over operating system adoption
are particularly high: horizontal network effects mean that widely
adopted operating systems can snowball into even further adoption,
and successful operating system makers can seek advantages in the
marketing and sale of vertically related applications or hardware tied
to their operating systems.

The ongoing case of SCO Group v International Business Ma-
chines Inc represents a major legal battle between the spheres of free
and proprietary software, at a moment when dominance over operat-
ing systems for Internet server-related purposes is truly up for grabs.
Through a rather complex chain of title, SCO has become the reposi-

Colum J L & Arts 281 (2003) (Margo Crespin, trans) (discussing the development of copyleft);
Christian H. Nadan, Open Source Licensing: Virus or Virtue?. 10 Tex Intel Prop L J 349 (2002)
(emphasizing the importance of programmers understanding open source licensing).

2 Docket No 2:03CV00294 (D Utah), online at http://www.utd.uscourts.gov/documents
ibm.html (visited Jan 16,2004).

[71:265

Evaluating Free and Proprietary Software

tory of a number of exclusive intellectual property rights surrounding
the original Unix operating system initiated in 1969 at Bell Labs. The

GNU/Linux operating system was self-consciously developed by oth-
ers beginning in 1984 to be functionally similar to Unix but completely
nonproprietary; it was written with "fresh" code, so that none of its

source code recipe could be said to be copied or inherited from Unix.
In the late 1990s a number of firms saw strategic benefit to making
contributions to the GNU/Linux code base, even though the under-

standing was that such contributions could not be proprietized by the

contributing firms. The case began when SCO claimed that IBM had
impermissibly contributed code to GNU/Linux that in fact did come

from Unix (specifically, IBM's own licensed proprietary variant of
Unix called AIX), thus violating IBM's agreement with SCO and
"poisoning" GNU/Linux in ways that implicate state unfair competi-

tion and trade secret law. SCO has announced it will be adding claims
of copyright infringement as well. SCO is seeking billions of dollars in
damages from IBM and has terminated IBM's license to sell AIX
(which IBM claims SCO cannot do). Exactly what code is alleged to
have been stolen has not yet been made public, and in the meantime
SCO has asked, under general threat of litigation, that every entity
making use of GNU/Linux pay hundreds of dollars in licensing fees to
SCO, and agree not to modify or redistribute GNU/Linux source
code.' To the extent they are heeded, SCO's demands would result in
the conversion of the flagship example of free, copylefted software
into a proprietary system owned and controlled by SCO, one user at a
time.

The facts of SCO v IBM-many of which inhere in the intricacies
of decades-old licensing agreements and the similarities between par-

ticular lines of code-will be developed over a trial process that could
take years. I am concerned less with the facts underlying a doctrinal
claim by SCO against IBM than I am with the implications of the case
for the overall conflict between free and proprietary software. This is

because the open development model for free software invites con-
tinuing litigation over intellectual property rights. Such litigation could
be initiated by any number of firms that can plausibly claim infringe-
ment, for reasons that may include a larger strategic targeting of the

3 See James Maguire, IBM Wins Skirmish in SCO Battle, online at http://enterprise-linux-

it.newsfactor.com/stry.xhtm?stry-itle=BM-Wins-Skirmish-in-SCO-Battle&story-id=22813
(visited Jan 16, 2004).

4 See SCO Intellectual Property License for Linux, online at http://www.sco.com-

scosource/description.html (visited Jan 16, 2004) (describing license terms), Matt Hamblen, SCO

Sends Notices to 6,000 Linux Licensees, ComputerWeekly.com (Jan 5, 2004), online at http://

www.computerweekly.com/articles/article.asp?liArticleID=1
2 7 3 6 0&li (visited Jan 16, 2004) (re-

porting on letters sent by SCO to Linux users outlining evidence of copyright infringement).

20041

The University of Chicago Law Review

free software development model. To properly assess and remedy
these claims, the legal system must have a framework with which to
judge the social value of free software's open development model-
and thereby decide how to apply ambiguous doctrine when claims of
infringement arise, including claims that purport to reach not just de-
velopers but also consumers of that software. This is especially so be-
cause nonproprietary software doesn't simply encompass discrete
code bases like that of GNU/Linux: the fundamental protocols of the
Internet and its subset the World Wide Web are themselves nonpro-
prietary and potentially vulnerable to claims of intellectual property
ownership by any number of parties.

In order to normatively evaluate the spheres of free and proprie-
tary software, it is helpful to briefly review their defining characteris-
tics. This becomes especially important due to the still-ongoing seman-
tic debates among software developers about what counts as "free"
and "proprietary."' In reality, however, these debates often stand in for
differing ideological preferences about how software should be writ-
ten or shared.

I. DEFINING FREE AND PROPRIETARY SOFTWARE
ALONG THREE DIMENSIONS

A. Legal Differences between Free and Proprietary Software

In 1984 Richard Stallman quit his job at the MIT artificial intelli-
gence lab to develop what he called "free" software-software that
others could copy and change as they pleased. He found this type of
sharing ethically important and endeavored to rewrite the proprietary
Unix operating system from scratch so that his version would be sub-
stitutable for Unix without infringing any copyrights in the existing
Unix code. He named his project GNU, for "GNU's Not Unix." GNU
culminated in 1992 after the contribution of a small but crucial piece
of code captained by computer science student Linus Torvalds. Tor-
valds's addition of the "Linux kernel" made GNU (now called
GNU/Linux, or, confusingly, just Linux) complete.'

Stallman's own vision of free software evolved from that of soft-
ware released without authorial restrictions on copying or deriva-
tion-a notion that could be accomplished by simply releasing one's
work into the public domain-into software governed by a licensing
scheme that would prohibit authors of derivations from placing re-
strictions on the distribution of their derived works that had not been

5 See Nadan, 10 Tex Intel Prop L J at 351-55 (cited in note 1) (distinguishing among the
"free," "open source." and "proprietary" software movements).

6 See Richard Stallman, The GNU Project, online at http://www.gnu.org/gnu/
thegnuproject.html (visited Jan 16, 2004).

[71:265

Evaluating Free and Proprietary Software

placed on the distribution of the original code. Preventing the "pro-
prietization" of derivative software lies at the heart of Stallman's
"copyleft" General Public License (GPL), under which GNU/Linux
and a great deal of other free software are now distributed. Copyleft
was styled as a form of legal jujitsu-a use of copyright (and the avail-
ability of accompanying licensing terms) to "protect" free software
from being more restrictively copyrighted by those who added their
own code to the existing software and redistributed the end product.
Indeed, copyleft's restrictions may kick in even before a later work in-
corporates sufficient code from a copylefted program to be considered
a derivative work; Stallman's license is written to cover any work "that
in whole or in part contains or is derived from the Program or any
part thereof."'

Stallman's flagship GPL has been joined by a flotilla of other
similar licenses by other authors, all with their own variations. Beyond
the universal trait of allowing others to build upon the base code and
release the result, some, such as the license for a variant of Unix called
BSD, allow others to build upon the underlying software without pass-
ing on the accompanying "copyleft" restrictions. The BSD license ma-
terially differs from a wholly public domain release only in that it re-
quires a particular kind of credit or attribution for the original author
on whose work the new program is based. Such works are usually
called "open" rather than "free," or if "free" are qualified as "but not
copyleft."' Other licenses allow new derivative works only under some
form of copyleft restriction, but vary on whether "nearby works" (that
is, works bundled on the same CD-ROM or linked to, but not literally
incorporated into, the licensed code) must themselves be copylefted.

Proprietary software in mass distribution almost uniformly re-
serves all rights to the author except a license to "run" the software on
the purchaser's computer.' For many users this restriction does not

7 See GNU General Public License, Terms and Conditions for Copying, Distribution and
Modification, online at http://www.gnu.org/copyleft/gpl.html#SEC3 (visited Jan 16,2004).

8 Id § 2(b). Compare 17 USC § 101 (2000):

A "derivative work" is a work based upon one or more preexisting works, such as a[n] ...
abridgment, condensation, or any other form in which a work may be recast, transformed,
or adapted. A work consisting of editorial revisions, annotations, elaborations, or other

modifications which, as a whole, represent an original work of authorship, is a "derivative
work."

9 For an introduction to open source software, see Nadan. 10 Tex Intel Prop L J at 350

(cited in note 1).
10 Software is subject to copyright, and new software incorporating elements of old soft-

ware can comprise a derivative work. See 17 USC § 117 (delineating limited exceptions to exclu-

sive rights for computer programs): Dun & Bradstreet Software Services; Inc v Grace Consulting,
Inc, 307 F3d 197,212 (3d Cir 2002) ("Grace's W-2 program using Copy and Call commands cop-

ies Geac's computer copyrighted code. Thus. it is a derivative work; the inclusion of the Copy and

Call commands makes Grace's W-2 programs infringing, derivative works of Geac's copyrighted

2004]

The University of Chicago Law Review

bar desired activity; non-programmers will evaluate a software pur-
chase on the basis of the program's functionality rather than on its use
as a base in producing other software. The most popular software in-
cludes tools that allow a user to adjust how the software operates in
fine detail. Far beyond checking a box in a "Preferences" window,
powerful "macro" languages are often built in to allow skilled users to
alter the way in which their proprietary software operates, essentially
writing software that is run by their own software. There has been no
suggestion that macros written by users cannot themselves be trans-
ferred, copied, or licensed however the users desire, without claim of
right by the proprietary software maker. (The absence of any claim to
users' macros may be more a market decision than a presumption that
such a claim would not be sustained.)

For proprietary software not in the mass market, any number of
arrangements might be agreed upon between the vendor and the con-
sumer. The user might be permitted, for example, to see the source
code and make changes, but not to distribute those changes to others.
(Without such permission, consumer changes, if substantial enough,
would comprise derivative works-the creation of which is a right re-
served to the original author.)" Most recently, in an apparent response
to the successes of the free software movement, certain proprietary
software makers have attempted to allow approved users some meas-
ure of ability to adapt proprietary software to their own uses by ac-
cessing and altering the software's source code. Microsoft's "Shared
Source Initiative" (SSI) is one such example.'2 Through it, certain users
can adapt Microsoft code to their own special needs, so long as they
promise not to further share or sell that code to others. It is too early
in the deployment of SSI to gauge how central it is to Microsoft's
software marketing efforts. While the company has not released sys-
tematic data on its adoption, Microsoft's manager of the SSI reports
that over 650,000 developers are using shared source code from the

'3company.

software."), cert denied, 123 S Ct 2075 (2003); Sega Enterprises Ltd v Accolade, Inc, 977 F2d 1510,
1518-19 (9th Cir 1992) (holding that intermediate copying of computer object code may infringe
exclusive rights granted to the copyright owner to reproduce work, to prepare derivative works
based upon copyrighted work, and to authorize preparation of copies and derivative works, re-
gardless of whether the end product of the copying also infringes those rights).

I I See 17 USC § 106(2).
12 See Microsoft Shared Source Initiative Overview, online at http://www.microsoft.com/

resources/sharedsource/lnitiative/Initiative.mspx (visited Jan 16, 2004).
13 Email from Jason Matusow (Dec 1.2003) (on file with author).

[71:265

Evaluating Free and Proprietary Software

B. Technical Differences between Free and Proprietary Software

As suggested by the use of the term "recipe" for the code under-
lying functioning software, a given piece of software typically exists in
two related components: source code and object code. Source code is
what programmers write; object code is what computers run. Software
developers produce object code from source code through the use of a
compiler. Object code without source code is useful for running a pro-
gram, but not for easily learning how it works or was written. An at-
tempt to "decompile" object code back into source code yields in-
structions that bear little resemblance to the original recipe for the
program, even if they are functionally equivalent. To analogize, imag-
ine a "decompiled" recipe that calls for adding teaspoon of sugar,
mixing, and then removing teaspoon of sugar. This is perhaps func-
tionally equivalent to the original recipe that calls for adding tea-
spoon of sugar, but would be a much more frustrating, though to be
sure not impossible, task.

Free software-at least as defined by Richard Stallman-is not
free if the source code is not also included with the object code.
Stallman has famously stated that the "free" in "free software" is more
like free speech than free beer." One can charge for a particular copy
of free software so long as the source is provided and a specific bundle
of rights is delivered with the software-such as the right to further
copy it.'" On the other hand, one can give away proprietary software,
like the Internet Explorer Web browser, without charge, and it still
isn't "free." The GPL requires that any release of a covered program
(for example, one whose author drew upon someone else's GPL'd
code to write it) must also readily make available the program's corre-
sponding source code.

Releasing the object code without the source code has been a
hallmark of proprietary software, complementing the creator's exer-
cise of a legal right to prevent the use of source code in new works
with a technical barrier to unauthorized use. Still, these legal and tech-
nical facts are analytically independent of one another. Some proprie-
tary programming code happens not to be compiled, so the "executa-
ble" and source are one and the same thing. For example, the code by
which Web pages are rendered is typically this way; anyone viewing a
Web page can, in most browsers, ask to "view source" and will
promptly be shown the code by which the page came about. To copy
such code and use it for purposes other than viewing the Web page in

14 See GNU Project, The Free Software Definition, online at http://www.gnu.org/

philosophy/free-sw.html (visited Jan 16,2004).
15 See id (noting that free software requires giving users freedom to run, copy, distribute,

study, change, and improve the software).

20041

The University of Chicago Law Review

question might well infringe the copyright of the code's author. Apart
from the more typical instances in which the technical nature of cod-
ing permits object code to be given to users without easily revealing to
them its ancestral source, phenomena like Microsoft's SSI illustrate
that vendors might willingly forgo the technical protections of releas-
ing object code without source code, while still asserting strong legal
protection over the uses of that released source code. "

Conversely, one might imagine a software author releasing, for
whatever reason, only object code into the public domain. Such a re-
lease would leave no legal rights vested in the author, but the author
might still be in an advantageous position to further exploit the soft-
ware in new works, since only the author would have access to the
clean source code for the program.

Thus, the legal and technical protections afforded respectively by
copyright in a program and the selective release of its object but not
source code are by no means coextensive. In the technical realm, one
can only make the general observation that there currently exists a
spectrum-from public domain, through free, on to shared and then
"fully" proprietary-and that along that spectrum one tends to see in-
creasing legal and technical restrictions on code's use.

C. Developmental Differences between Free and

Proprietary Software

A third analytically independent difference along the spectrum
from free to proprietary is the manner in which the software is typi-
cally developed. As most famously chronicled in Eric Raymond's es-
say The Cathedral and the Bazaar, at least two prevailing models of
software development exist, roughly grouped around notions of free
and proprietary software." The former "open" mode of development
grows out of venerable academic computer science and amateur tink-
ering circles (amateur not in the sense of dilettante, but rather in the
sense of one who undertakes something more out of love or fascina-
tion than professional duty). Open development emphasizes collabo-
rative work even among strangers and across or even entirely outside
of the boundaries of firms, with users of a piece of software them-
selves contributing changes and improvements to the larger project

16 Source code as well as object code receives copyright protection. See, for example,

Computer Associates International, Inc v Altai, Inc, 982 F2d 693, 702 (2d Cir 1992). In addition.
the Sixth Circuit has held that source code is a form of speech under certain circumstances and
thus subject to First Amendment protections Junger v Daley, 209 F3d 481,485 (6th Cir 2000).

17 Eric S. Raymond, The Cathedral and the Bazaar, 3 First Monday (Mar 2, 1998), online at
http://www.firstmonday.dk/issues/issue3_3/raymondl#dl (visited Jan 16, 2004) (arguing that open
source software may win out because, inter alia, it has a larger talent pool to draw on than do
commercial companies).

[71:265

Evaluating Free and Proprietary Software

over time. These improvements are often not made in response to
others' requests, but rather in order to make the software more usable
to the person making the changes. The perceived absence of legal or
technical constraints on the use and modification of a program's code
can, under the right circumstances, spawn hundreds of variants among
myriad developers. For example, the operating system Unix counts
dozens of variants in its line, some licensed from an upstream claimant
to proprietary rights.'" Some versions of Unix available in source code
to the tinkering public (such as FreeBSD and the self-consciously in-
tended-as-free GNU/Linux) have been thought by those working on
them to be free of practically all legal restrictions.

The tremors of the SCO v IBM lawsuit -in which a single com-
pany has claimed rights to pieces of Unix that are claimed to have
been incorporated into GNU/Linux-are significant precisely because
they undermine the collaborative development model. Verifying the
"legality" of code offered by a contributor to a project is both super-
fluous to its technical merit -and thus possibly only of peripheral in-
terest to project leaders-and nearly impossible to do with any thor-
oughness, since the proprietary code that is, by hypothesis, the source
of pilfered free code is not accessible to project leaders assembling the
free code from willing sources purporting to have the right to offer it.
Any doubt as to the legal character of the result of the collaborative
development process, if taken seriously, could impel software devel-
opers to work only on code that they themselves originated, or for
which ownership interests are as clear as possible, with clarity
achieved through certification procedures among contributors that
circumscribe the number of participants and the pace of their contri-
butions.

The typical mode of development for proprietary software, by
contrast, revolves around a firm and those software developers or
other firms in specific privity to it. Software is conceived of, written,
and tested in-house, and the firm takes some responsibility for user
support and upgrades, all typically in response to market pressures
and influences. More important for legal purposes, a proprietary firm
can stand behind the pedigree of its code, both because it presumably
originated in controlled and known circumstances and because the ab-
sence of accompanying source code makes the firm's offerings diffi-
cult to examine for evidence of theft, whether from competing pro-
prietary companies or from copylefted, publicly available software.

I See Eric Lv6nez, Unix History, online at http://www.levenez.com/unix (visited Jan 16,

2004) (providing a chart and table listing Unix derivatives).

20041

The University of Chicago Law Review

II. NORMATIVE PRINCIPLES FOR THE EVALUATION

OF SOFTWARE PRODUCTION MODELS

The proprietary model of software development joins commodi-
tized creative counterparts, such as literature, movies, and television, in
relying heavily on government-created rights for its business model.
This implicates the much-explored question of just what the nature
and scope of IP rights in software should be, and the newer, less-
explored question of how those rights should play out when in conflict
with free software. " The latter question arises when assessing the ex-
tent to which free software's copyleft licenses should be enforced
(something no court has ever squarely ruled on), or, more generally, in
choosing sides in cases of "code poisoning," when, as in SCO v IBM,
the code from one model of development is said to have routinely
tainted the code of another.

To create a framework in which one might evaluate lawsuits such
as SCO v IBM, I will explore several normative goals and see how
each mode of software development fares with respect to each one. I
conclude there is no one-size-fits-all model; for this and other reasons,
the legal system should be chary of resolving ambiguous doctrinal is-
sues in SCO v IBM and other potential suits too strongly or mechani-
cally in favor of the proprietary model, which for reasons I will explain
is more consistently likely to be represented by the plaintiff in such
suits.

A. Nonutilitarian Objectives/Moral Rights

The justifications for free software generally (and copyleft spe-
cifically) invoked by its originator, Richard Stallman, are based on
free software as a social movement. This movement centers on the be-
lief that software (and all nonrivalrous goods) simply ought to be free
as an ethical matter and that making it so as a matter of policy would
not cause software development to grind to a halt."' Stallman's view no

19 The literature is so far silent on the prospect of free software becoming "poisoned" by
proprietary software, but for more general discussions on the differences between open source
and proprietary software, see Klaus M. Schmidt and Monika Schnitzer, Public Subsidies for
Open Source? Some Economic Policy Issues of the Software Market, 16 Harv J L & Tech 473
(2003) (applying modern economic theory to the software market in general and analyzing
whether open source software can mitigate the potential market failures); Marcus Maher, Open
Source Software: The Success of an Alternative Intellectual Property Incentive Paradigm, 10 Ford-
ham Intel Prop, Media, & Enter L J 619 (2000) (employing complexity theory to explain both the
success of the open source movement and its potential problems).

2() See Richard M. Stallman, Why Software Should Be Free, in Joshua Gay. ed, Free Soft-
ware, Free Society: Selected Essays of Richard M. Stallman 119 (Free Software Foundation 2002).
See also Richard M. Stallman, Why "Free Software" Is Better than "Open Source," in Gay, ed.
Free Software, Free Society 55 (describing the differences between free and open source software,
and positing that open source is merely a development methodology, while free software is a so-

[71:265

Evaluating Free and Proprietary Software

doubt discounts the mercenary nature of many software coders, but in
any case simply asserts the unfairness of only some members of soci-
ety possessing a benefit-however it originated-that cannot legally
be shared, even though there are no logistical or technical barriers to
its immediate enjoyment by all. This belief not only applies to access
to executable code, but also access to source code, so that others may
learn from it and improve upon it.

So long as government policy is willing to permit proprietary
claims to one's work (or to one's creative improvement upon public
domain works), Stallman believes in a moral right to assert a proprie-
tary claim against the proprietization by others of one's own work.
Stallman is thus among those who justify intellectual property rights-
if at all-not for instrumentalist reasons, but rather due to the belief
that one ought to be able to control one's own intellectual fruits be-
cause it's simply right to be able to do so. For example, Bruce Spring-
steen objected to Bob Dole playing "Born in the U.S.A." at campaign
rallies, though he found sending a widely reported fax to the campaign
to be all the redress he wanted." The same moral beliefs that can un-
derlie a desire not to have one's creative work enjoyed without pay-
ment or permission-that is, a stance that authors deserve the right to
proprietize their works-are the very ones that can bolster Stallman's
claim that copyleft is appropriate, regardless of its instrumental effects
on innovation or other values, because it effectuates the wishes of the
software's creator.

Stallman's outlook contrasts with that of Eric Raymond and his
Open Source Initiative,22 a nonprofit marketing effort for free software
begun in the wake of Netscape's announcement that its browser
would be de-proprietized." Raymond eschews moral argument in fa-
vor of espousing pragmatic advantages to individual firms that adopt
nonproprietary software. 4 The division between Stallman's "free soft-
ware" movement and Eric Raymond's "open source" movement re-
flects in large measure a difference in normative outlook-Stallman's
deontological, Raymond's consequentialist. Stallman focuses on the
innate responsibilities of software authors to share their work with
others (even if they charge per physical copy of the work); Raymond

cial movement).
21 See Shauna Snow, Morning Report;Arts and Entertainment Reports from the Times, Na-

tional and International News Services and the Nation's Press, LA Times F2 (Oct 10,1996).
22 See http://www.opensource.org (visited Jan 16,2004).
23 See Chris Oakes, Netscape Rolls the Dice, Wired News (Mar 31, 1998), online at

http://www.wired.com/news/technology/0,1282,11358,00.html (visited Jan 16, 2004) (announcing
Netscape's plan to release the programming source code for its Communicator software).

24 See Open Source Initiative Frequently Asked Questions, online at http:/l
www.opensource.org/advocacy/faq.php (visited Jan 16, 2004) ("The Open Source Initiative is a
... pitch for 'free software' on solid pragmatic grounds rather than ideological tub-thumping.").

20041

The University of Chicago Law Review

focuses on the benefits that accrue to authors and users if they avail
themselves of a collaborative development model and a sharing of
source code.

If authorial control is the end, then copylefted software and pro-
prietary software can be reconciled-they merely reflect different de-
sires by authors, each exercising control over respective works. The le-
gal framework could recognize strong proprietary rights to include the
enforcement of copyleft licenses where authors elected to use them. If
sharing existing works is the goal (rather than a means to a more gen-
eral maximization of social welfare that would take other factors into
account), then proprietary rights should be minimized and copyleft is
unnecessary, since there is then no potential proprietization of one's
work to forestall through "jujitsu" licensing.

In instances where one kind of code finds its way into another
kind of code-what I have referred to as "code poisoning" -valuing
an author's control over his or her output would at its limit presuma-
bly overcome the author's freedom to select from among other au-
thors' work as inputs. Of course, this still does not speak to remedy;
one could value strong authorial control without, say, believing in
statutory (rather than actual) damages for code poisoning. Indeed,
one could imagine a legal framework that provides opportunity to
correct poisoned code before damages of any kind accrue.

B. Utilitarian Objectives

1. Innovation.

The proprietary model of software production yields activity en-
couraged by the availability of exclusive rights, while the existence of
public domain and free software products shows that those rights are
not always needed to encourage creative output.

What impact would the absence of enforceable exclusive rights
have on the innovation currently taking place in the proprietary mar-
ket? Innovation would decline to the extent that software authors de-
sire money and are relying upon exclusivity to generate income. In the
absence of legal support for exclusivity, mercenarily minded authors
might shift more reliance to anti-copying controls and other technical
measures to enforce exclusivity. For example, the provision of soft-
ware could evolve into a service rather than a product: only by "tuning
in" to the software author's Internet portal could one run the author's
software, and access to this portal could be managed through subscrip-
tion instead of purchase. A "streaming software" site could then
choose to market a lifetime subscription, which would in most respects
be functionally equivalent to a purchase. This evolution appears to be
taking place in the music industry, where physical instantiations such

[71:265

Evaluating Free and Proprietary Software

as cassettes and CDs are giving way to "soft" manifestations such as
files located on generic devices or on-demand streaming. From the
consumer's point of view, so long as there is ready Internet access, a
shift from product to service as a way of technologically proprietizing
legally unprotected software could make little difference.

The true value of the exclusive rights to the software publishers
may thus lie less in restricting users' behavior, which can be effected
through technical means, such as copy protection or streaming, and
more in restricting the behavior of competing vendors. The separation
of source and object code offers a measure of technical protection, en-
suring that outside competitors have to go to some expense to reverse
engineer targeted software. However, the migration of software engi-
neers-and the source code they have written-from one firm to the
next may force companies to fall back on unwieldy nondisclosure
agreements or trade secret protection to preserve exclusivity in the
absence of copyright. Alternatively, firms could increase the level of
compartmentalization to which employees are subjected, giving them
less access to company data so that they cannot easily take copies of
the firm's goods with them should they go or be lured away. A lessen-
ing of available proprietary rights could also stall the nascent sharing
of source code by proprietary vendors-a practice still so limited, to
be sure, that its loss would be virtually unnoticeable to the market at
large. Still, none of these reactions is socially desirable; all would
merely contribute to an arms race of protection and circumvention
that legal protections in their ideal form (and at the "right" level) pre-
termit.

What benefits to innovation could loosened proprietary rights
bring? One answer lies in the fact that a great deal of software is built
literally on predecessors' code. In a well-functioning marketplace of
vendors, one can envision individuals and firms that believe they are
in a position to improve upon others' work contracting among them-
selves and splitting the exclusive bounty of the improvement. How-
ever, this assumption ignores the fact that such firms are often not
readily in negotiating contact with one another, and the absence of
available source code may make it hard for outside innovators even to
explore the possibility of offering advantageous improvements to ex-
isting developers' work.2

Putting the still-gelling and much-debated issue of software pat-
ents aside," if the proprietary model were not legally enforceable, no

25 See Mark A. Lemley, The Economics of Improvement in Intellectual Property Law, 75
Tex L Rev 989, 1064 (1997) (concluding that the likelihood of original creators and improvers
reaching agreement with each other affects what type of default rule is most efficient with regard
to their property rights).

26 See generally Bradford L. Smith and Susan 0. Mann, Innovation and Intellectual Prop-

2004]

The University of Chicago Law Review

contact (much less, contract) with the original author would be neces-
sary for an innovator to create a derivative work. This production of
derivative works would include the adaptation of formerly proprietary
software into public domain software written by downstream authors
who do not share the financial incentives or interests that the classic
contracting model presumes. With access to source code and an ab-
sence of tight legal restriction on its use, nonproprietary authors could
help adapt software for audiences whose lack of size or money is in-
sufficient to appeal to vendors driven solely by anticipated profit.
Copyright terms of limited duration are one mechanism for splitting
the difference between proprietary incentives and later public im-
provements to formerly proprietary works. However, the effectively
infinite copyright term of seventy to ninety-five years for computer
software eliminates one source of cheap inputs for both proprietary
and nonproprietary authors who wish to make use of others' work
that may have already paid for itself (and for which the proprietary
model has provided sufficient incentive) several times over."

An author who chooses to place her work in the public domain
creates more prospects for innovation than one who requires the in-
centives of proprietization and who, to the extent allowed, then mo-
nopolizes improvements to her work. Such a contribution is "found
money" that can be shared nonrivalrously among consumers, and used
without further cost or negotiation by other software vendors." But
under even the most restrictive plausible copyright regime, so long as
the rights conveyed can be repudiated, authors are still free to donate
their labors to the overall pool of collaborative labor around free
software, and some profit-driven firms have found reasons to want to
do so. For example, Netscape made available, with minimal licensing
restrictions, the source code of its Communicator 5.0 Web browser
software through mozilla.org, a form of at-or-below-cost pricing per-
haps designed to staunch the flow of users from Netscape Communi-
cator to Microsoft's Internet Explorer."

erty Protection in the Software Industry: An Emerging Role for Patents?, 71 U Chi L Rev 241
(2004).

27 See Jane C. Ginsburg, How Copyright Got a Bad Name for Itself, 26 Colum J L & Arts

61, 65 (2002) (discussing the existing struggle between copyright and technology, and expressing
skepticism about the value of ever-lengthening copyright terms).

M This assumes that an author of free software is indeed giving of her time, rather than,

say, her employer's. Those working on free software projects as a distraction from day jobs are,
perhaps, simply illicitly transferring energy from one model to the other, though employers suffi-
ciently distressed by such behavior could presumably act to stop it.

29 See Oakes, Netscape Rolls the Dice, Wired News (cited in note 23). The mozilla code ap-

pears to have since been completely rewritten by free software developers, and the project is

now operated by a nonprofit organization. See http://www.mozilla.org (visited Jan 16, 2004).

[71:265

Evaluating Free and Proprietary Software

Beyond making available the option of placing material into the
public domain, do enforceable copyleft rights contribute to innova-
tion? The question is, in its essence, a restatement of the initial puzzle:
what is the scope of proprietary rights that ought to be created and
enforced by the government in the service of innovation? If one be-
lieves that innovation primarily happens with financial incentive and
favors ensuring such incentive by granting exclusive rights to authors,
then an original piece of copylefted software is itself an anomaly, and
a requirement that derivative software not be proprietary removes in-
centives to build further upon it.! If one additionally believes that free
software developers would still write new software even if the copyleft
license were not available-forcing a choice between releasing the
software into the public domain and claiming traditional proprietary
rights-then it would be better not to permit copylefting. A similar
question might arise over how much control the legal system should
permit donors to assert over the disposition of their gifts, whether
given to charities or friends. If donors would still give away money in
the absence of an ability to direct its use, one might assume more effi-
cient allocation of the money down the line if the beneficiaries could
direct and redirect the funds according to circumstances and prefer-
ence, weighed against the unhappiness of the donor in not being able
to more fully specify the uses for her money.

However, the enforceability of copyleft could assist in "commons
creation" in networked software." Copyleft as a mass license attempts
to contribute its covered works to a pool of commonly accessible
work, and as a quid pro quo for using and improving upon those
works, to compel others to contribute to that pool any improvements
they make and wish to release. The value of common standards in
networked technological endeavors has long been appreciated, and if
those standards stood to be proprietized by some future party, current
contributors might be tempted to hold back their contributions to the
common project."

30 See Chris Sontag, Is the GPL Good for the Software Industry? No, Network World 45
(Oct 6,2003).

31 See generally Nadan, 10 Tex Intel Prop L J at 357-59 (cited in note 1) (discussing how
copyleft licenses function to encourage the contributions of a "free labor open source commu-
nity" that would otherwise be reluctant to share enhancements for free).

32 See, for example, Robert P. Merges, Who Owns the Charles River Bridge? Intellectual
Property and Competition in the Software Industry 4-5 (UC Berkeley Public Law & Legal The-
ory Working Paper No 15,1999), online at http://papers.ssrn.com/abstract=208089 (visited Jan 16,
2004) (discussing the problem of code "lock-out" as stifling innovation in software); Elizabeth G.
Lowry, Comment, Copyright Protection for Computer Languages: Creative Incentive or Techno-
logical Threat?, 39 Emory L J 1293, 1340 (1990) ("With an established [open] standard, develop-
ers can concentrate their investments on innovations to a language instead of creation of a new
language. Protection of a standard ... would force competitors to 'reinvent the wheel' in order to
develop a competitive product.").

20041

The University of Chicago Law Review

The best examples we have of such anxieties in the Internet
space, however, have more to do with sudden retroactive claims of
proprietary rights by formerly cooperating firms." For example, the
World Wide Web Consortium has gone to great lengths to ask its
member firms to promise not to assert proprietary claims in the stan-
dards they contribute to the body. And the networking world has re-
acted with dismay over the prospect that the International Standards
Organization-which previously had asserted copyright in such things
as standardized two-letter country code abbreviations solely for the
purpose of selling individual documents containing those abbrevia-
tions-might now attempt to charge royalties to those firms that have
made use of the codes in their software.

Indeed, fundamental Internet protocols are written up in ways
designed to ensure continued openness. For example, TCP/IP (by
which Internet packets are routed) and SMTP (by which email is sent
from one Internet server to another) are described in "request for
comments" documents (RFCs) developed in the collaborative model
of free software and placed under copyright by the Internet Society on
behalf of the unincorporated Internet Engineering Task Force in a
way that is designed to prevent anyone from asserting exclusive rights
to them. Interestingly, the Internet Society license is consummately
ambiguous as to its copyleft status-whether protocols that draw upon
those of the Internet Society may themselves be proprietized" At the
very least, the Internet Society's assertion of copyright is intended to
assure users of the documents that no retroactive claims of more re-
strictive copyright will be made. It says, in relevant part:

Copyright (C) The Internet Society (<date>). All Rights Re-
served.

This document and translations of it may be copied and fur-
nished to others, and derivative works that comment on or oth-
erwise explain it or assist in its implmentation [sic] may be pre-
pared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright

33 See Molly Shaffer Van Houweling, Cultivating Open Information Platforms: A Land

Trust Model, 1 J Telecom & High Tech L 309, 314 (2002) (noting that Sun Microsystems won a

$20 million settlement after suing Microsoft for developing Sun's Java system into a product that

would run only on Microsoft-operated machines).

34 See generally Evan Hansen, New ISO Fees on the Horizon?, CNET News.com, online at

http://news.com.com/2100-1032_3-5079256.html (visited Jan 16, 2004) (describing an ISO pro-

posal to collect royalties for the use of country codes).
35 See RFC-Editor/RFC-Copyright-Story, online at http://www.faqs.org/rfcs/rfc-editor/

rfc-copyright-story.html (visited Jan 16,2004) (indicating that certain types of derivative works

are subject to copyleft restrictions, but remaining silent as to derivative works in general).

[71:265

Evaluating Free and Proprietary Software

notice and this paragraph are included on all such copies and de-
rivative works."

One cannot tell whether the above license requires that any
documents drawing on RFCs enough to be called derivative works-
perhaps improvements upon the standards described within-must be
released, if at all, in a way that cannot be proprietized. Presumably,
though, a company making improvements could simply attempt to
rewrite the description at a high enough level of abstraction so as not
to constitute a derivative work, and therefore "own" the resulting pro-
tocols-derivative to the ideas within the RFC documents, but not de-
rivative to the text of the documents themselves. Even if this is the
case, SMTP and TCP/IP may remain safely nonproprietized, unless
and until the benefit of adopting a proprietary variant seems unambi-
guous enough that a critical mass of Internet users, as represented by
those writing software that in turn uses the RFC protocols, chooses to
adopt it.

On the purely instrumentalist grounds of wanting to foster inno-
vation, there are reasons to expect that different software authors are
motivated by different aims. Thus, fostering a system that permits not
only public domain works, but also proprietary works and copylefted
ones, ensures the maximum range of incentives for those who would
write code and share it with others. If a particular innovation cries out
for improvement, but the entity best in a position to improve it is con-
fronted with an undesirable initial model-either a proprietary firm
wishing to improve upon copylefted software, or a set of free software
programmers wanting to improve upon proprietary software-the
safety valve of inventing around the restrictions imposed by the model
exists. Examples of both can be found. Microsoft rewrote its imple-
mentation of Sun's Java programming language from the ground up,
leaving Sun Microsystems with only a trademark right, rather than a
copyright, in the final product. Symmetrically, Richard Stallman con-
ceived of GNU/Linux as the near-functional-equivalent, but geneti-
cally distinct, variant of Unix designed to be free of the original soft-
ware's copyright claims."

36 Id.
37 For a discussion of the complexities involved in evaluating the costs and benefits of in-

venting around, see Louis Kaplow, The Patent-Antitrust Intersection: A Reappraisal, 97 Harv L
Rev 1813, 1869-73 (1984) (concluding that inventing around does not contribute to social wel-
fare when patent combinations are permitted, so firms should be forced to compete in order to
discourage duplicative research and development and diminish monopoly losses).

2004]

The University of Chicago Law Review

2. Reliability.

It's important to have software that works well. One might think
that goal is well accounted for in a simple market model, and perhaps
reliability is but a subset of innovation. But there are reasons to want
to emphasize it in particular.

The proprietary model boasts such a notion of reliability: pre-

sumably consumers will pay exactly for the level of reliability that
they want and that can be cost-effectively delivered to them. Compa-
nies like Microsoft have scores of in-house testers, and indeed, in re-
cent months Microsoft has claimed improved reliability"--rather than
new features-as critical to the success of further iterations of its
software.

Eric Raymond's Cathedral and the Bazaar essay argues that
"peer-reviewed" software-such as collaboratively developed free
software in which the source code is viewable, testable, and change-
able by all-is more reliable, on the general theory that many dispa-
rate eyes can catch more mistakes under more circumstances." Of
course, making one's source code available does not guarantee that
thousands will flock to view it and fix it. The patching of such software
depends on the charitable instincts of volunteer testers, as well as the
selfish desires of users of free software to have it function well for
their own purposes.

Of course, the development models can overlap somewhat. Pro-
prietary software typically goes through a "beta test," in which con-
sumers are given special pricing (but still no access to source code) in
exchange for trying out new software and reporting bugs that are
found. Conversely, the most popular free software has variants shep-
herded by corporate software vendors like Red Hat. " These vendors
are willing to take responsibility for selecting and distributing im-
provements to users, and provide general support and consultation to
those users on a cash-and-carry basis.

An attempt to generalize about the innate superiority of the free
development model over the proprietary one along the axis of reli-
ability is difficult, and the debate in large part turns on which empiri-
cal examples are chosen to support each side. Still, free and proprie-
tary software can compete alongside one another in a market; market
participants wanting to run a Web server can decide between installing
the free Apache software at one price or installing Microsoft

38 See Microsoft, Trustworthy Computing, online at http://www.microsoft.com/mscorp/

innovation/twc (visited Jan 16, 2004) (describing Microsoft's launch of Trustworthy Computing,

an initiative aimed at improving "security, privacy, reliability, and business integrity").
39 See Raymond, 3 First Monday (cited in note 17).
40 See Red Hat website, online at http://www.redhat.com (visited Jan 16, 2004).

[71:265

Evaluating Free and Proprietary Software

software at another price, and can factor into the purchasing decision
estimates of reliability or ease of addressing later problems.

But there is a more important way in which reliability is at issue,
one in which individual market decisions may prove insufficient.
Twenty-first century software is in many cases not installed and used
in isolation. Rather, the machines running the software are connected
to and communicating across the global Internet. To the extent those
machines run identical software, a single flaw in that software can be
exploited across the network, and the total cost of software unreliabil-
ity must be taken into account. That total may not be measured only
by the sum of harms to each compromised user. For example, if one is
shopping online among three vendors of books and all three vendors'
sites disappear at the same moment because each is running the same
flawed software, succumbing to the same maliciously exploited flaw,
the inconvenience is far worse than if each vendor were to experience
the same problems but at different times, for different reasons, be-
cause each was running different software.

Further, a computer worm may instruct each infected host to
generate new network traffic, perhaps seeking new computers to in-
fect. That traffic slows down the network for everyone - accruing costs
even to those not infected or who, because they are running com-
pletely different software, cannot be infected. Homogeneity in de-
ployed software scores well for interoperability among machines, but
it places everyone's eggs in one basket. A diversity of computer plat-
forms running a diversity of software distributes those eggs-perhaps
resulting in the same number of potential infections but avoiding
catastrophic simultaneous infection.

The notion that free software could come to exist even when the
market does not otherwise call for it in strict dollar calculus-as in
Richard Stallman's GNU/Linux ideological endeavor to recreate Unix
functionality without using any Unix code-is a windfall insurance
policy beyond whatever competitive benefits can come when multiple
market-driven vendors respond to financial incentives to write com-
peting code.

3. Use and dissemination.

Were there not a perceived need to create monetary incentives
for its production through monopoly control of code, the nonrivalrous
nature of software would make for an abundance of existing code that
could easily satisfy every demand if copying were freely permitted.
The legal rights of the proprietary model of production are geared to
create those incentives, but they come with a well-documented cost.
Tempered only to some extent by crude price discrimination, the mo-
nopoly holders of rights in proprietary software will end up making

2004]

The University of Chicago Law Review

available fewer copies of their software than there are users who want
them-users who would pay a price for them that still beats the ven-
dor's marginal cost. This has been used as one basis of claiming that
leaky enforcement of copyright can actually assist the proprietary
vendor while enhancing social welfare, since poorer consumers can
come together to pool their money to purchase and then-perhaps il-
legally but still beneficially-share a single copy of a proprietary
work."

If someone truly cannot afford the software, a vendor might be
indifferent to that person's obtaining and using it, since it cannot be
realistically counted as a lost sale. Indeed, there may be reasons why it
is helpful to get someone who might be a future customer to use one's
software at a time when he or she otherwise would not pay for it. This
could be for the purposes of acclimatization in anticipation of future
paying use, such as in the cases of free access to services offered to law
students by both Westlaw and Lexis. It could also be used, when net-
work effects are thought to be present, as a way of creating systemic
momentum toward one's increased market share of products by non-
paying and paying customers alike. The increasing willingness on Mi-
crosoft's part to cut its prices in developing countries may be an ex-
ample of this, as a way of forestalling competing software-especially
GNU/Linux-from taking root there. And, thanks to network effects
between platform and application, there can be reasons to want to see
wide adoption of certain components of one's stable of software. Mi-
crosoft's and Netscape's Internet browsers remain examples of a give-
away in service of such a rationale. 2 In Microsoft's case it was likely to
defeat a threat to its operating system by the Java computing platform
bundled with the competing Netscape browser; in Netscape's case it
was largely to make sales of Netscape Web servers seem more attrac-
tive, given the number of Netscape browsers that might be thought to
more seamlessly connect to them.

But if equal access is sought, the free and public domain models
by definition guarantee such opportunity. If one were more concerned
about an even distribution of technology's fruits-rather than in pro-
viding monetary incentives for the creation of those fruits to begin
with-then any scheme that eschews assertion of exclusive rights over
its products would seem preferable along this dimension. Copylefting
one's software may provide better access than simply releasing it into

41 See Yannis Bakos, Erik Brynjolfsson, and Douglas Lichtman, Shared Information
Goods, 42 J L & Econ 117, 123-24 (1999) (stating that team valuations make consumer purchas-
ing more predictable, at times increasing seller profit).

42 See, for example, Jonathan Zittrain, The Un-Microsoft Un-Remedy: Law Can Prevent the
Problem That It Can't Patch Later, 31 Conn L Rev 1361, 1365-66 (1999), for strategic reasons
that Microsoft and others might choose to give away a browser for free.

[71:265

Evaluating Free and Proprietary Software

the public domain, since it insists that any works based upon the
copylefted software themselves be made available without exclusive
restriction.

C. Accounting for Differential Systemic Legal Vulnerabilities

Should systemic differences in levels of "legal aggressiveness" be-
tween the competing models be adjusted for? Major vendors of pro-
prietary software have a stake, with their counterparts in other pro-
prietary creative fields, in defending the overall system of rights that
produces the greatest revenue. They hire lobbyists, donate to congres-
sional campaigns, and ask federal trade representatives to vindicate
their structural rights overseas. When the World Intellectual Property
Organization announced the prospect of a meeting devoted to study-
ing the place of nonproprietary production models within the spec-
trum of intellectual property," the Business Software Alliance ob-
jected strenuously, and the meeting was canceled Of course, free
software advocates are known to function in political circles-there
are trade associations favorable to the free software idea4 and numer-
ous academics making the case for models of nonproprietary produc-
tion.4'

Apart from a more general political debate between the compet-
ing spheres in which proprietary software's profits may have an ad-
vantage over free software's prophets, there is a discernable "litigation
differential." Prior to litigation derivative to the SCO v IBM case,
there were only two recorded instances of litigation initiated by hold-
ers of copyleft licenses claiming proprietization of code in violation of
the license.4 This dearth of litigation may be traced to the lack of vio-

43 The author co-signed a letter urging WIPO to hold such an exploratory meeting. See
Letter from Sixty-Eight Scientists and Economists to Kamil Idris, Director General of the World
Intellectual Property Organization (July 7, 2003), online at http://www.cptech.org/ip/wipo/
kamil-idris-7july2003.pdf (visited Jan 16, 2004) (requesting that WIPO host a meeting on open
and collaborative development).

44 See Jonathan Krim, The Quiet War over Open-Source, Wash Post El (Aug 21,2003).
45 See, for example, The Consumer Project on Technology, online at http://www.cptech.org

(visited Dec 16,2003) (a nonprofit advocacy group started by Ralph Nader in 1995 focusing on a
variety of technology issues affecting consumers, including intellectual property rights and com-
petition policy).

46 See, for example, Yochai Benkler, Coase's Penguin, or, Linux and The Nature of the
Firm, 112 Yale L J 369,381 (2002) (stating that peer production is not always the best model, but
it does have certain systematic advantages that allow it to succeed); Lawrence Lessig, The Future
of Ideas: The Fate of the Commons in a Connected World 14-16 (Random House 2001) (arguing
that control stifles creativity, and that just because control is possible does not mean it is justi-
fied).

47 See FAQ on MySQL v& NuSphere Dispute (July 13, 2001), online at http://
www.mysql.com/news/article-75.html (visited Jan 16, 2004), for the plaintiffs view of one case.
The case settled on undisclosed terms. See also John Markoff, Copyright Lawsuit Is Turnabout
for SCO, NY Times C2 (Oct 13, 2003) (describing a lawsuit (the settlement of which is under

2004]

The University of Chicago Law Review

lations, but it might also be plausibly attributed to the fact that pro-
prietary software does not make available its source code-making it
difficult to detect if such software contains an infringement of
copylefted code. Free software, on the other hand, is much more vul-
nerable to claims of infringement by proprietary code authors, since
the source code to free software is, by definition, available for exami-
nation by would-be plaintiffs. That availability also makes the costs of
stealing copylefted software typically lower than the costs of stealing
proprietary code, since free software's source code is there for the tak-
ing.

Further, the collaborative nature of free software development
makes it harder to determine where various contributions are coming
from, and whether they belong to those who purport to donate them.
Indeed, in the example of an employee of a software company chari-
tably moonlighting for a free software project, the employee's work
may not even be the employee's to give. A barely read but still facially
enforceable employment agreement may commit all software written
by the employee to the employer's possession, which would set the
stage for an infringement claim against those within the free software
project making use of the employee's contributions. Of course, the col-
laborative nature of free software development may simply mean that
more violations can take place, in which case increased legal vulner-
ability to claims of infringement would be a natural consequence
rather than an indication of an unlevel playing field.

Finally, the costs of litigation are beyond the reach of many free
software developers-who may be donating their time, but do not ex-
pect to have to spend or receive hard cash as a result of their labors.
The idea of providing legal shelters for noncommercial or nonprofit
entities-in the form of tax-exempt status, charitable immunity from
tort, or as a factor in a fair use test excusing copyright infringement"-
is not new, and may reflect some desire for such enterprises to be able
to devote their energies to their eleemosynary purposes. Of course,
such breaks are often controversial, 9 but a systemic vulnerability of
free software to theft by proprietary companies, coupled with a com-
paratively higher exposure of free software authors, publishers, and

seal) brought by a corporate maker of copylefted software against a sister company to SCO).
48 See 17 USC § 107(1) (providing that "the purpose and character of the use, including

whether such use is of a commercial nature or is for nonprofit educational purposes" should be
one of the factors considered in determining whether a particular use of a copyrighted work is a
"fair use").

49 See, for example, Tanya D. Marsh, A Dubious Distinction: Rethinking Tax Treatment of
Private Foundations and Public Charities, 22 Va Tax Rev 137, 148-50 (2002) (discussing the his-
tory of controversy surrounding tax treatment of private foundations and Congress's attempts to
thwart abusive tax shelters).

[71:265

Evaluating Free and Proprietary Software

even mere users to accusations of theft by proprietary software com-
panies, suggests a playing field that is not level.

CONCLUSION

SCO v IBM will be the first case to test the legal viability of the
free software development model, and its concomitant practice of
making software source code routinely available to the general public.
It most likely will not be the last. In future work, I will explore the
possibility that, under the normative principles described here, copy-
right law should be construed in a way that does not permit a poi-
soned pea of unauthorized code under the mattress of a massive soft-
ware project to effectively compromise the entire work. I will consider
the possibility that copyright's statute of limitations might be applied
to require those claiming copyright infringement to bring such claims
within a three-year (or shorter) window stemming from the targeted
software's initial public release of source code, encouraging creators
within both models to release their source code, and providing helpful
legal stability to those wishing to work within a collaborative software
development environment.

Both free and proprietary software production have a storied and
venerable history dating back to the first moments of public comput-
ing. Ensuring a demilitarized zone between them serves most of the
interests we would care to advance. It shows caution in the face of un-
certainty about the long-term benefits of either model against the
other and demonstrates an appreciation of the subtlety of the conflict
between them.

2004]

